Chemical gradients in the Milky Way from the RAVE data I. Dwarf stars

Aims. We aim at measuring the chemical gradients of the elements Mg, Al, Si, and Fe along the Galactic radius to provide new constraints on the chemical evolution models of the Galaxy and Galaxy models such as the Besancon model. Thanks to the large number of stars of our RAVE sample we can study how the gradients vary as function of the distance from the Galactic plane. Methods. We analysed three different samples selected from three independent datasets: a sample of 19 962 dwarf stars selected from the RAVE database, a sample of 10 616 dwarf stars selected from the Geneva-Copenhagen Survey (GCS) dataset, and a mock sample (equivalent to the RAVE sample) created by using the GALAXIA code, which is based on the Besancon model. The three samples were analysed by using the very same method for comparison purposes. We integrated the Galactic orbits and obtained the guiding radii (Rg) and the maximum distances from the Galactic plane reached by the stars along their orbits (Zmax). We measured the chemical gradients as functions of Rg at different Zmax. Results. We found that the chemical gradients of the RAVE and GCS samples are negative and show consistent trends, although they are not equal: at Zmax < 0.4 kpc and 4.5 < Rg(kpc) < 9.5, the iron gradient for the RAVE sample is d[Fe/H]/dRg = −0.065 dex kpc −1 , whereas for the GCS sample it is d[Fe/H]/dRg = −0.043 dex kpc −1 with internal errors of ±0.002 and ±0.004 dex kpc −1 , respectively. The gradients of the RAVE and GCS samples become flatter at larger Zmax. Conversely, the mock sample has a positive iron gradient of d[Fe/H]/dRg =+ 0.053 ± 0.003 dex kpc −1 at Zmax < 0.4 kpc and remains positive at any Zmax. These positive and unrealistic values originate from the lack of correlation between metallicity and tangential velocity in the Besancon model. In addition, the low metallicity and asymmetric drift of the thick disc causes a shift of the stars towards lower Rg and metallicity which, together with the thin-disc stars with a higher metallicity and Rg, generates a fictitious positive gradient of the full sample. The flatter gradient at larger Zmax found in the RAVE and the GCS samples may therefore be due to the superposition of thin- and thick-disc stars, which mimicks a flatter or positive gradient. This does not exclude the possibility that the thick disc has no chemical gradient. The discrepancies between the observational samples and the mock sample can be reduced by i) decreasing the density; ii) decreasing the vertical velocity; and iii) increasing the metallicity of the thick disc in the Besancon model.

[1]  Judy Y. Cheng,et al.  METALLICITY GRADIENTS IN THE MILKY WAY DISK AS OBSERVED BY THE SEGUE SURVEY , 2011, 1110.5933.

[2]  G. Seabroke,et al.  Local stellar kinematics from RAVE data – III. Radial and vertical metallicity gradients based on red clump stars , 2012, 1201.3065.

[3]  K. Freeman,et al.  The New Galaxy: Signatures of Its Formation , 2002, astro-ph/0208106.

[4]  U. Munari,et al.  The radial velocity experiment (RAVE): First data release , 2006 .

[5]  James Binney,et al.  Distribution functions for the Milky Way , 2009, 0910.1512.

[6]  Mamoru Doi,et al.  The Milky Way Tomography with SDSS. II. Stellar Metallicity , 2008, 0804.3850.

[7]  G. Stinson,et al.  Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks , 2008, 0808.0206.

[8]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[9]  C. Chiappini,et al.  Abundance Gradients and the Formation of the Milky Way , 2001, astro-ph/0102134.

[10]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[11]  A. Helmi,et al.  Simulations of minor mergers - I. General properties of thick discs , 2008, 0803.2323.

[12]  B. Gibson,et al.  Distance determination for RAVE stars using stellar models , 2010, 1007.4411.

[13]  Using Cepheids to determine the galactic abundance gradient I. The solar neighbourhood , 2001, astro-ph/0112525.

[14]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[15]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[16]  Matthias Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. II. The Fine Structure of Simulated Galactic Disks , 2003 .

[17]  H. W. Zhang,et al.  Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars , 2006 .

[18]  David W. Hogg,et al.  THE MILKY WAY HAS NO DISTINCT THICK DISK , 2011, 1111.6585.

[19]  D. O. Astronomy,et al.  Open clusters as key tracers of Galactic chemical evolution. III. Element abundances in Berkeley 20 , 2008, 0807.2313.

[20]  Gerard Gilmore,et al.  New light on faint stars – III. Galactic structure towards the South Pole and the Galactic thick disc , 1983 .

[21]  I. Minchev,et al.  A NEW MECHANISM FOR RADIAL MIGRATION IN GALACTIC DISKS: SPIRAL–BAR RESONANCE OVERLAP , 2009, 0911.1794.

[22]  I. Minchev,et al.  Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations , 2010, 1006.0484.

[23]  James Binney,et al.  Chemical evolution with radial mixing , 2008, 0809.3006.

[24]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[25]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[26]  B. Gibson,et al.  Chemical gradients in the Milky Way from the RAVE data , 2013, 1309.4279.

[27]  B. Carney,et al.  ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS , 2012, 1206.6931.

[28]  Walter Dehnen,et al.  Mass models of the Milky Way , 1996 .

[29]  G. L. Wycoff,et al.  The Second US Naval Observatory CCD Astrograph Catalog (UCAC2) , 2004, astro-ph/0403060.

[30]  B. Gibson,et al.  The Wobbly Galaxy : kinematics north and south with RAVE red-clump giants , 2013, 1302.2468.

[31]  Naohito Nakasato,et al.  CHEMODYNAMICAL SIMULATIONS OF THE MILKY WAY GALAXY , 2008, Proceedings of the International Astronomical Union.

[32]  J. Binney,et al.  Origin and structure of the Galactic disc(s) , 2009, 0907.1899.

[33]  THE DISTRIBUTION OF THE ELEMENTS IN THE GALACTIC DISK. III. A RECONSIDERATION OF CEPHEIDS FROM l = 30° TO 250° , 2011, 1108.1947.

[34]  David Schlegel,et al.  The Milky Way Tomography with SDSS. I. Stellar Number Density Distribution , 2005, astro-ph/0510520.

[35]  D. Montes,et al.  Late-type members of young stellar kinematic groups – I. Single stars , 2001, astro-ph/0106537.

[36]  T. Beers,et al.  CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK , 2013, 1311.4569.

[37]  Judy Y. Cheng,et al.  A SHORT SCALE LENGTH FOR THE α-ENHANCED THICK DISK OF THE MILKY WAY: EVIDENCE FROM LOW-LATITUDE SEGUE DATA , 2012, 1204.5179.

[38]  U. Munari,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): SECOND DATA RELEASE , 2008, 0806.0546.

[39]  O. Bienaymé,et al.  Probing the Galactic thick disc vertical properties and interfaces , 2011 .

[40]  P. Kroupa Thickening of galactic discs through clustered star formation , 2001, astro-ph/0111175.

[41]  The Distribution of the Elements in the Galactic Disk , 2006 .

[42]  U. Munari,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE , 2006, 1309.4284.

[43]  U. Munari,et al.  Distance determination for RAVE stars using stellar models - III. The nature of the RAVE survey and Milky Way chemistry , 2011 .

[44]  D. Balser,et al.  H ii REGION METALLICITY DISTRIBUTION IN THE MILKY WAY DISK , 2011, 1106.1660.

[45]  J. Brinkmann,et al.  Chemodynamics of the Milky Way - I. The first year of APOGEE data , 2013, 1311.4549.

[46]  Yong-Heng Zhao,et al.  LAMOST spectral survey — An overview , 2012 .

[47]  C. D. Laney,et al.  Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc , 2008, 0810.0205.

[48]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk II: Variations with Galactic radius and height above the disk plane , 2014, 1401.5796.

[49]  B. Gibson,et al.  The relation between chemical abundances and kinematics of the Galactic disc with RAVE , 2013, Astronomy &amp; Astrophysics.

[50]  T. Beers,et al.  THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION , 2011, 1112.2214.

[51]  M. G. Lattanzi,et al.  GAIA: Composition, formation and evolution of the Galaxy , 2001, astro-ph/0101235.

[52]  E. Starkenburg,et al.  GALACTIC ARCHAEOLOGY: NEAR-FIELD COSMOLOGY AND THE FORMATION OF THE MILKY WAY , 2012 .

[53]  C. Brook,et al.  Orbital eccentricity as a probe of thick disc formation scenarios , 2009, 0909.3858.

[54]  B. Gibson,et al.  Thick disk kinematics from RAVE and the solar motion , 2012, 1209.0460.

[55]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[56]  J. Brinkmann,et al.  THE VERTICAL METALLICITY GRADIENT OF THE MILKY WAY DISK: TRANSITIONS IN [α/Fe] POPULATIONS , 2014, 1405.6724.

[57]  E. Rossetti,et al.  Chemical abundance analysis of the open clusters Cr 110, NGC 2099 (M 37), NGC 2420, NGC 7789, and M 67 (NGC 2682) , 2009, 0910.0723.

[58]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003 .

[59]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[60]  A. Bijaoui,et al.  Parameter estimation from a model grid application to the Gaia RVS spectra , 2012 .

[61]  A. Bijaoui,et al.  Automated derivation of stellar atmospheric parameters and chemical abundances: the MATISSE algorithm , 2006 .

[62]  A. Bijaoui,et al.  A spectroscopic survey of thick disc stars outside the solar neighbourhood , 2011, 1110.5221.

[63]  B. Gibson,et al.  The origin of the light distribution in spiral galaxies , 2009, 0905.4579.

[64]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[65]  S. Udry,et al.  Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data: Revisiting the concept of superclusters , 2004, astro-ph/0409579.

[66]  Abundance gradients in the Milky Way for α elements, iron peak elements, barium, lanthanum, and europium , 2006, astro-ph/0609813.

[67]  B. Gibson,et al.  A NEW STELLAR CHEMO–KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK , 2013, 1310.5145.

[68]  Vertical distribution of Galactic disk stars - I. Kinematics and metallicity , 2002, astro-ph/0210628.

[69]  B. Gibson,et al.  OBSERVATIONAL PROPERTIES OF THE METAL-POOR THICK DISK OF THE MILKY WAY AND INSIGHTS INTO ITS ORIGINS , 2011, 1105.3691.

[70]  Michelle L. Wilson,et al.  Testing formation mechanisms of the Milky Way's thick disc with RAVE , 2010, 1009.2052.

[71]  R. Carlberg,et al.  Dynamical evolution in galactic disks , 1985 .

[72]  Peter J. Teuben,et al.  The Stellar Dynamics Toolbox NEMO , 1995 .

[73]  B. Gibson,et al.  Distance determination for RAVE stars using stellar models , 2010, Astronomy &amp; Astrophysics.

[74]  Mpia,et al.  Kinematics of Stellar Populations with RAVE data , 2011, 1103.4631.

[75]  F. Matteucci,et al.  The origin of abundance gradients in the Milky Way: the predictions of different models , 2008, 0811.3505.

[76]  Ž. Ivezić,et al.  FORMATION AND EVOLUTION OF THE DISK SYSTEM OF THE MILKY WAY: [α/Fe] RATIOS AND KINEMATICS OF THE SEGUE G-DWARF SAMPLE , 2011, 1104.3114.

[77]  N. V. Kharchenko,et al.  PPM-Extended (PPMX) – a catalogue of positions and proper motions , 2008, 0806.1009.

[78]  P. Quinn,et al.  Heating of galactic disks by mergers , 1993 .

[79]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[80]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[81]  J. Binney Radial mixing in galactic discs , 2002, astro-ph/0203510.

[82]  P. Frinchaboy,et al.  Old open clusters in the outer Galactic disk , 2007, 0709.2126.

[83]  B. Gibson,et al.  Detection of a radial velocity gradient in the extended local disc with RAVE , 2010, Monthly Notices of the Royal Astronomical Society.

[84]  B. Gibson,et al.  EXPLORING THE MORPHOLOGY OF RAVE STELLAR SPECTRA , 2012, 1204.6502.

[85]  Sergio Ortolani,et al.  The Gaia-ESO Public Spectroscopic Survey , 2012 .

[86]  K. Carrell,et al.  METALLICITY GRADIENTS OF THICK DISK DWARF STARS , 2012, 1210.2824.

[87]  B. Carney,et al.  Elemental Abundance Ratios in Stars of the Outer Galactic Disk. III. Cepheids , 2005, astro-ph/0512348.

[88]  K. Carrell,et al.  THE METALLICITY GRADIENT OF THE THICK DISK BASED ON RED HORIZONTAL-BRANCH STARS FROM SDSS DR8 , 2011, 1110.1782.

[89]  Xu Zhou,et al.  The stellar metallicity distribution of the Milky Way from the Beijing-Arizona-Taiwan-Connecticut survey , 2013, 1307.4467.

[90]  B. Gibson,et al.  Galactic kinematics with RAVE data - I. The distribution of stars towards the Galactic poles , 2008, 0801.2120.

[91]  G. Seabroke,et al.  Local stellar kinematics from RAVE data - II. Radial metallicity gradient , 2011, 1109.6519.

[92]  C. Chiappini,et al.  Stellar diffusion in barred spiral galaxies , 2011, 1108.5631.

[93]  Olivier Bienayme,et al.  New distances to RAVE stars , 2013, 1309.4270.

[94]  The Distribution Of The Elements In The Galactic Disk. III. A Reconsideration Of Cepheids From L=30 Degrees To 250 Degrees , 2011 .

[95]  C. Chiappini,et al.  Chemodynamical evolution of the Milky Way disk - I. The solar vicinity , 2012, 1208.1506.

[96]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.