Structured regularization for conditional Gaussian graphical models

Conditional Gaussian graphical models are a reparametrization of the multivariate linear regression model which explicitly exhibits (i) the partial covariances between the predictors and the responses, and (ii) the partial covariances between the responses themselves. Such models are particularly suitable for interpretability since partial covariances describe direct relationships between variables. In this framework, we propose a regularization scheme to enhance the learning strategy of the model by driving the selection of the relevant input features by prior structural information. It comes with an efficient alternating optimization procedure which is guaranteed to converge to the global minimum. On top of showing competitive performance on artificial and real datasets, our method demonstrates capabilities for fine interpretation, as illustrated on three high-dimensional datasets from spectroscopy, genetics, and genomics.

[1]  Michael I. Jordan,et al.  Union support recovery in high-dimensional multivariate regression , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[2]  S. Geer,et al.  The Smooth-Lasso and other ℓ1+ℓ2-penalized methods , 2011 .

[3]  M. Calus,et al.  Whole-Genome Regression and Prediction Methods Applied to Plant and Animal Breeding , 2013, Genetics.

[4]  S. Geer,et al.  The Smooth-Lasso and other ℓ1+ℓ2-penalized methods , 2011 .

[5]  Hongzhe Li,et al.  VARIABLE SELECTION AND REGRESSION ANALYSIS FOR GRAPH-STRUCTURED COVARIATES WITH AN APPLICATION TO GENOMICS. , 2010, The annals of applied statistics.

[6]  Eric P. Xing,et al.  Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity , 2009, ICML.

[7]  David M. Blei,et al.  Exploiting Covariate Similarity in Sparse Regression via the Pairwise Elastic Net , 2010, AISTATS.

[8]  B. Efron The Estimation of Prediction Error , 2004 .

[9]  Holger Hoefling A Path Algorithm for the Fused Lasso Signal Approximator , 2009, 0910.0526.

[10]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[11]  T. Hesterberg,et al.  Least angle and ℓ1 penalized regression: A review , 2008, 0802.0964.

[12]  Emmanuel Barillot,et al.  Classification of microarray data using gene networks , 2007, BMC Bioinformatics.

[13]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[14]  Gerhard Tutz,et al.  Feature selection guided by structural information , 2010, 1011.2315.

[15]  R. Tibshirani,et al.  Degrees of freedom in lasso problems , 2011, 1111.0653.

[16]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[17]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[18]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[19]  Pei Wang,et al.  Partial Correlation Estimation by Joint Sparse Regression Models , 2008, Journal of the American Statistical Association.

[20]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[21]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[22]  Stephen P. Boyd,et al.  1 Trend Filtering , 2009, SIAM Rev..

[23]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[24]  Xiao-Tong Yuan,et al.  Partial Gaussian Graphical Model Estimation , 2012, IEEE Transactions on Information Theory.

[25]  Chris Hans Elastic Net Regression Modeling With the Orthant Normal Prior , 2011 .

[26]  Kyung-Ah Sohn,et al.  Joint Estimation of Structured Sparsity and Output Structure in Multiple-Output Regression via Inverse-Covariance Regularization , 2012, AISTATS.

[27]  S. Geer,et al.  ℓ1-penalization for mixture regression models , 2010, 1202.6046.

[28]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[29]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[30]  Adam J Rothman,et al.  Sparse Multivariate Regression With Covariance Estimation , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[31]  Yufeng Liu,et al.  Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood , 2012, J. Multivar. Anal..

[32]  E. Xing,et al.  Statistical Estimation of Correlated Genome Associations to a Quantitative Trait Network , 2009, PLoS genetics.

[33]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[34]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[35]  Julien Mairal,et al.  Optimization with Sparsity-Inducing Penalties , 2011, Found. Trends Mach. Learn..

[36]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[37]  Olivier Gascuel,et al.  Computational discovery of regulatory elements in a continuous expression space , 2012, Genome Biology.

[38]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[39]  T. Fearn,et al.  Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs , 1984 .

[40]  Howard D Bondell,et al.  Bayesian variable selection using an adaptive powered correlation prior. , 2009, Journal of statistical planning and inference.

[41]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[42]  T. Fearn,et al.  Bayesian Wavelet Regression on Curves With Application to a Spectroscopic Calibration Problem , 2001 .

[43]  M. Ng,et al.  A Coordinate Gradient Descent Method for Nonsmooth , 2009 .

[44]  Christophe Ambroise,et al.  Inferring multiple graphical structures , 2009, Stat. Comput..

[45]  Xuejing Li,et al.  Learning “graph-mer” Motifs that Predict Gene Expression Trajectories in Development , 2010, PLoS Comput. Biol..

[46]  T. Fearn,et al.  Multivariate Bayesian variable selection and prediction , 1998 .

[47]  B. S. Yandell,et al.  Mapping loci controlling vernalization requirement and flowering time in Brassica napus , 1995, Theoretical and Applied Genetics.

[48]  R. Tibshirani,et al.  Covariance‐regularized regression and classification for high dimensional problems , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[49]  B. Yandell,et al.  Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus , 2002, Molecular Breeding.

[50]  Hongzhe Li,et al.  A SPARSE CONDITIONAL GAUSSIAN GRAPHICAL MODEL FOR ANALYSIS OF GENETICAL GENOMICS DATA. , 2011, The annals of applied statistics.