Interface Physics in Complex Oxide Heterostructures

Complex transition metal oxides span a wide range of crystalline structures and play host to an incredible variety of physical phenomena. High dielectric permittivities, piezo-, pyro-, and ferroelectricity are just a few of the functionalities offered by this class of materials, while the potential for applications of the more exotic properties like high temperature superconductivity and colossal magnetoresistance is still waiting to be fully exploited. With recent advances in deposition techniques, the structural quality of oxide heterostructures now rivals that of the best conventional semiconductors, taking oxide electronics to a new level. Such heterostructures have enabled the fabrication of artificial multifunctional materials. At the same time they have exposed a wealth of phenomena at the boundaries where compounds with different structural instabilities and electronic properties meet, giving unprecedented access to new physics emerging at oxide interfaces. Here we highlight some of these exciting...

[1]  Philippe Ghosez,et al.  Tailoring the Properties of Artificially Layered Ferroelectric Superlattices , 2007 .

[2]  Hermann Kohlstedt,et al.  Tunneling Across a Ferroelectric , 2006, Science.

[3]  E. Dagotto,et al.  Conducting Jahn-Teller domain walls in undoped manganites , 2010, 1005.4918.

[4]  A. Ohtomo,et al.  Controlled Carrier Generation at a Polarity-Discontinued Perovskite Heterointerface , 2004 .

[5]  Jaejun Yu,et al.  Polarization screening and induced carrier density at the interface of LaAlO3 overlayer on SrTiO3 (001) , 2009, 0904.1636.

[6]  J. E. Mooij,et al.  Possibility of Vortex-Antivortex Pair Dissociation in Two-Dimensional Superconductors , 1979 .

[7]  Ismail,et al.  Ferromagnetism stabilized by lattice distortion at the surface of the p-wave superconductor Sr(2)RuO(4) , 2000, Science.

[8]  Bratkovsky,et al.  Abrupt appearance of the domain pattern and fatigue of thin ferroelectric films , 2000, Physical review letters.

[9]  N. Mathur,et al.  Multiferroic and magnetoelectric materials , 2006, Nature.

[10]  Seungwu Han,et al.  Density and spatial distribution of charge carriers in the intrinsic n -type LaAlO 3 -SrTiO 3 interface , 2009 .

[11]  Y. Tomioka,et al.  Colossal magnetoresistive manganites , 1999 .

[12]  Y. Park,et al.  Critical thickness of ultrathin ferroelectric BaTiO3 films , 2005 .

[13]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[14]  C. Ahn,et al.  Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O{3}/La{0.8}Sr{0.2}MnO{3} Multiferroic heterostructures. , 2010, Physical review letters.

[15]  W. Pickett,et al.  Avoiding the polarization catastrophe in LaAlO3 overlayers on SrTiO3(001) through polar distortion. , 2008, Physical review letters.

[16]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[17]  C. Fennie,et al.  Hybrid Improper Ferroelectricity: A Mechanism for Controllable Magnetization-Polarization Coupling , 2010, 1007.1003.

[18]  J. Chaloupka,et al.  Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. , 2008, Physical review letters.

[19]  A. Ohtomo,et al.  Observation of the fractional quantum Hall effect in an oxide. , 2010, Nature materials.

[20]  E. Salje,et al.  LETTER TO THE EDITOR: Sheet superconductivity in twin walls: experimental evidence of ? , 1998 .

[21]  A. Munkholm,et al.  Antiferrodistortive reconstruction of the PbTiO(3)(001) surface. , 2001, Physical review letters.

[22]  Y. Tokura Multiferroics—toward strong coupling between magnetization and polarization in a solid , 2007 .

[23]  H. Hwang,et al.  Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. , 2009, Physical review letters.

[24]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[25]  Nonlinear optical detection of a ferromagnetic state at the single interface of an antiferromagnetic LaMnO 3 / SrMnO 3 double layer , 2008 .

[26]  Z. K. Liu,et al.  Experimental Realization of a Three-Dimensional Topological Insulator , 2010 .

[27]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[28]  C. Vaz,et al.  Magnetoelectric Effects in Complex Oxides with Competing Ground States , 2009 .

[29]  Polarization enhancement in two- and three-component ferroelectric superlattices , 2005, cond-mat/0505491.

[30]  First-principles study of epitaxial strain in perovskites , 2005, cond-mat/0506777.

[31]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[32]  L. Eric Cross,et al.  Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients , 2006 .

[33]  J. C. Lee,et al.  Superconducting transition at 38 K in insulating-overdoped La2CuO4-La1.64Sr0.36CuO4 superlattices: evidence for interface electronic redistribution from resonant soft X-ray scattering. , 2008, Physical review letters.

[34]  A. Kolpak,et al.  Fundamental asymmetry in interfacial electronic reconstruction between insulating oxides: An ab initio study , 2009, 0904.4734.

[35]  C. Ambrosch-Draxl,et al.  High-Temperature Superconductivity in a Single Copper-Oxygen Plane , 2009, Science.

[36]  O. Auciello,et al.  Ferroelectricity in Ultrathin Perovskite Films , 2004, Science.

[37]  R. Clarke,et al.  Structural basis for the conducting interface between LaAlO3 and SrTiO3. , 2007, Physical review letters.

[38]  J. Rondinelli,et al.  Carrier-mediated magnetoelectricity in complex oxide heterostructures. , 2007, Nature nanotechnology.

[39]  R. Martin,et al.  Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. , 2008, Physical review letters.

[40]  Harold Y. Hwang,et al.  An Emergent Change of Phase for Electronics , 2010, Science.

[41]  K. Bouzehouane,et al.  Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. , 2007, Nature materials.

[42]  M. Fiebig Revival of the magnetoelectric effect , 2005 .

[43]  C. Ahn,et al.  Electric field effect in correlated oxide systems , 2003, Nature.

[44]  R. Winkler Spin-orbit Coupling Effects in Two-Dimensional Electron and Hole Systems , 2003 .

[45]  Donghwa Lee,et al.  Mixed Bloch-Néel-Ising character of 180° ferroelectric domain walls , 2009 .

[46]  Gustau Catalan,et al.  Progress in perovskite nickelate research , 2008 .

[47]  Berry-phase theory of polar discontinuities at oxide-oxide interfaces , 2009, 0909.1500.

[48]  Jeffrey B. Neaton,et al.  First-principles study of symmetry lowering and polarization in BaTiO3/SrTiO3 superlattices with in-plane expansion , 2005 .

[49]  A. I. Buzdin Proximity effects in superconductor-ferromagnet heterostructures , 2005 .

[50]  A. Morpurgo,et al.  Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. , 2010, Physical review letters.

[51]  Hwang,et al.  Lattice effects on the magnetoresistance in doped LaMnO3. , 1995, Physical review letters.

[52]  K. Schwarz,et al.  Competing structural instabilities in the ferroelectric Aurivillius compound Sr Bi 2 Ta 2 O 9 , 2004 .

[53]  Thomas Tybell,et al.  Ferroelectricity in thin perovskite films , 1999 .

[54]  A. Fert,et al.  High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. , 2007, Physical review letters.

[55]  James F. Scott,et al.  Structure and Device Characteristics of SrBi_2Ta_2O_9-Based Nonvolatile Random-Access Memories , 1996 .

[56]  Michael Faley,et al.  Oxygen octahedron reconstruction in the SrTiO 3 /LaAlO 3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy , 2009 .

[57]  A M Bratkovsky,et al.  Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. , 2005, Physical review letters.

[58]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[59]  H. Jaffrès,et al.  Towards two-dimensional metallic behavior at LaAlO3/SrTiO3 interfaces. , 2009, Physical review letters.

[60]  Philippe Ghosez,et al.  Ferroelectricity and tetragonality in ultrathin PbTiO3 films. , 2004, Physical review letters.

[61]  Philippe Ghosez,et al.  Strain-induced ferroelectricity in simple rocksalt binary oxides. , 2009, Physical review letters.

[62]  C. Hellberg,et al.  Supplemental Information for Nanoscale Control of an Interfacial Metal-Insulator Transition at Room Temperature , 2008 .

[63]  A. Haghiri-Gosnet,et al.  Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices , 1999 .

[64]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[65]  Vanderbilt,et al.  Effect of quantum fluctuations on structural phase transitions in SrTiO3 and BaTiO3. , 1995, Physical review. B, Condensed matter.

[66]  N. Reyren,et al.  Electric field control of the LaAlO3/SrTiO3 interface ground state , 2008, Nature.

[67]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[68]  M. Gabay,et al.  Tunable Rashba spin-orbit interaction at oxide interfaces. , 2009, Physical review letters.

[69]  L. Bellaiche,et al.  Unusual phase transitions in ferroelectric nanodisks and nanorods , 2004, Nature.

[70]  H. Koinuma,et al.  Single crystal SrTiO3 field-effect transistor with an atomically flat amorphous CaHfO3 gate insulator , 2004 .

[71]  H. Christen,et al.  Strong polarization enhancement in asymmetric three-component ferroelectric superlattices , 2005, Nature.

[72]  W. Pickett,et al.  SCIENTIFIC HIGHLIGHT OF THE MONTH : Electronic Phenomena at Complex Oxide Interfaces : Insights from First Principles Electronic Phenomena at Complex Oxide Interfaces : Insights from First Principles , 2009 .

[73]  Chang-Beom Eom,et al.  Strain Tuning of Ferroelectric Thin Films , 2007 .

[74]  High-temperature interface superconductivity between metallic and insulating copper oxides , 2008, Nature.

[75]  A. Schrott,et al.  Mott transition field effect transistor , 1998 .

[76]  F. Schäfers,et al.  Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard x-ray photoelectron spectroscopy. , 2008, Physical review letters.

[77]  B. Silverman,et al.  Depolarization fields in thin ferroelectric films , 1973 .

[78]  T. Kopp,et al.  Two-dimensional electron liquid state at LaAlO 3 -SrTiO 3 interfaces , 2009, 0907.1176.

[79]  L. Bellaiche,et al.  Phase diagrams ofBaTiO3∕SrTiO3superlattices from first principles , 2007 .

[80]  X. Hong,et al.  Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La 1 − x Sr x MnO 3 , 2003 .

[81]  C. Ahn,et al.  X-ray photoemission studies of the metal-insulator transition in LaAlO 3 /SrTiO 3 structures grown by molecular beam epitaxy , 2009 .

[82]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[83]  D. Tenne,et al.  Interfacial coherency and ferroelectricity of BaTiO3∕SrTiO3 superlattice films , 2007 .

[84]  Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. , 2006, Physical review letters.

[85]  Heinz,et al.  Ferroelectric relaxation of the SrTiO3(100) surface. , 1989, Physical review letters.

[86]  D. Hamann,et al.  Self-Consistent Calculation of the Electronic Structure at an Abrupt GaAs-Ge Interface , 1977 .

[87]  J. Triscone,et al.  Influence of the growth conditions on the LaAIO3/SrTiO3 interface electronic properties , 2010 .

[88]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[89]  Xiao-Liang Qi,et al.  The quantum spin Hall effect and topological insulators , 2010, 1001.1602.

[90]  E. Salje,et al.  Domain boundary engineering , 2009 .

[91]  S. K. Streiffer,et al.  Observation of nanoscale 180° stripe domains in ferroelectric PbTiO3 thin films , 2002 .

[92]  H. Fukuyama,et al.  Magnetoresistance in Two-Dimensional Disordered Systems: Effects of Zeeman Splitting and Spin-Orbit Scattering , 1981 .

[93]  P. Shirage,et al.  Genuine Phase Diagram of Homogeneously Doped CuO2 Plane in High-Tc Cuprate Superconductors , 2008, 0810.0880.

[94]  Coexistence of antiferrodistortive and ferroelectric distortions at thePbTiO3(001)surface , 2004, cond-mat/0410375.

[95]  James F. Scott,et al.  Intrinsic dielectric response in ferroelectric nano-capacitors , 2004 .

[96]  M. Büttiker Edge-State Physics Without Magnetic Fields , 2009, Science.

[97]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[98]  H. Koinuma,et al.  Effect of A -site cation ordering on the magnetoelectric properties in [ ( LaMnO 3 ) m / ( SrMnO 3 ) m ] n artificial superlattices , 2002 .

[99]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[100]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[101]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[102]  M. Medarde,et al.  Structural, magnetic and electronic properties of perovskites (R = rare earth) , 1997 .

[103]  E. Artacho,et al.  Ferrielectric twin walls in CaTiO3. , 2008, Physical review letters.

[104]  K. Bouzehouane,et al.  Electron energy loss spectroscopy determination of Ti oxidation state at the (001) LaAIO3/SrTiO3 interface as a function of LaAIO3 growth conditions , 2007, 0712.0223.

[105]  K. Rabe,et al.  Physics of thin-film ferroelectric oxides , 2005, cond-mat/0503372.

[106]  Zheng-hao Chen,et al.  Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation , 2003 .

[107]  Y. Tokura,et al.  Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces. , 2007, Physical review letters.

[108]  E. A. Kraut,et al.  Polar heterojunction interfaces , 1978 .

[109]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[110]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[111]  F. Morrison,et al.  Size effects on thin film ferroelectrics: Experiments on isolated single crystal sheets , 2008 .

[112]  C. Kane,et al.  Observation of Unconventional Quantum Spin Textures in Topological Insulators , 2009, Science.

[113]  C. Fennie,et al.  Absence of critical thickness in an ultrathin improper ferroelectric film. , 2008, Physical review letters.

[114]  J. A. Misewich,et al.  A field effect transistor based on the Mott transition in a molecular layer , 1996 .

[115]  Satoshi Okamoto,et al.  Electronic reconstruction at an interface between a Mott insulator and a band insulator , 2004, Nature.

[116]  A. Tagantsev,et al.  Electric polarization in crystals and its response to thermal and elastic perturbations , 1991 .

[117]  Vanderbilt,et al.  Competing structural instabilities in cubic perovskites. , 1994, Physical review letters.

[118]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[119]  S. N. Ruddlesden,et al.  New compounds of the K2NIF4 type , 1957 .

[120]  Y. Tokura,et al.  Perovskite superlattices as tailored materials of correlated electrons , 2001 .

[121]  J. Junquera,et al.  Critical thickness for ferroelectricity in perovskite ultrathin films , 2003, Nature.

[122]  T. Schneider,et al.  Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface , 2009 .

[123]  J. Scott,et al.  Strain-gradient-induced polarization in SrTiO3 single crystals. , 2007, Physical review letters.

[124]  S. G. Davison,et al.  Basic Theory of Surface States , 1996 .

[125]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[126]  Shimpei Ono,et al.  Electric‐Field Control of the Metal‐Insulator Transition in Ultrathin NdNiO3 Films , 2010, Advanced materials.

[127]  Jeremy Levy,et al.  Oxide Nanoelectronics on Demand , 2009, Science.

[128]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[129]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[130]  P. Kelly,et al.  Polarity-induced oxygen vacancies at LaAlO3∕SrTiO3 interfaces , 2010, 1006.5146.

[131]  J. Mannhart,et al.  Oxide Interfaces—An Opportunity for Electronics , 2010, Science.

[132]  L. Martin,et al.  Advances in the growth and characterization of magnetic, ferroelectric, and multiferroic oxide thin films , 2010 .

[133]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[134]  K. Müller,et al.  SrTi O 3 : An intrinsic quantum paraelectric below 4 K , 1979 .