Superstrong coupling of a microwave cavity to yttrium iron garnet magnons

Multiple-post reentrant 3D lumped cavity modes have been realized to design the concept of a discrete Whispering Gallery and Fabry-Perot-like Modes for multimode microwave Quantum Electrodynamics experiments. Using the magnon spin-wave resonance of a submillimeter-sized Yttrium-Iron-Garnet sphere at millikelvin temperatures and a four-post cavity, we demonstrate the ultra-strong coupling regime between discrete Whispering Gallery Modes and a magnon resonance with a strength of 1.84 GHz. By increasing the number of posts to eight and arranging them in a D4 symmetry pattern, we expand the mode structure to that of a discrete Fabry-Perot cavity and modify the Free Spectral Range (FSR). We reach the superstrong coupling regime, where spin-photon coupling strength is larger than FSR, with coupling strength in the 1.1 to 1.5 GHz range.

[1]  Y. P. Chen,et al.  Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems. , 2015, Physical review letters.

[2]  Cristiano Ciuti,et al.  Input- output theory of cavities in the ultrastrong coupling regime : The case of time-independent cavity parameters , 2006, cond-mat/0606554.

[3]  Robert J Schoelkopf,et al.  Storage of multiple coherent microwave excitations in an electron spin ensemble. , 2009, Physical review letters.

[4]  M. Tobar,et al.  Giant $g$-factors of Natural Impurities in Synthetic Quartz , 2013, 1312.3690.

[5]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[6]  G J Milburn,et al.  Reversible optical-to-microwave quantum interface. , 2011, Physical review letters.

[7]  J. Raimond,et al.  Quantum Memory with a Single Photon in a Cavity , 1997 .

[8]  N. J. Lambert,et al.  Identification of spin wave modes in yttrium iron garnet strongly coupled to a co-axial cavity , 2015, 1506.02902.

[9]  Ivan S. Maksymov,et al.  Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures , 2015 .

[10]  M. Siegel,et al.  Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. , 2012, Physical Review Letters.

[11]  G Humbert,et al.  Rigorous analysis of highly tunable cylindrical transverse magnetic mode re-entrant cavities. , 2013, The Review of scientific instruments.

[12]  F. Nori,et al.  Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere , 2015, npj Quantum Information.

[13]  M. Flatt'e,et al.  Size dependence of strong coupling between nanomagnets and photonic cavities , 2010, 1005.3068.

[14]  E. Solano,et al.  Circuit quantum electrodynamics in the ultrastrong-coupling regime , 2010 .

[15]  Rigorous numerical study of strong microwave photon-magnon coupling in all-dielectric magnetic multilayers , 2015, 1503.07282.

[16]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[17]  K. Fujisawa,et al.  General Treatment of Klystron Resonant Cavities , 1958 .

[18]  Michael E. Tobar,et al.  Ultrasensitive microwave spectroscopy of paramagnetic impurities in sapphire crystals at millikelvin temperatures , 2013, 1311.1049.

[19]  H. Huebl,et al.  Exchange magnon-polaritons in microwave cavities , 2014, 1412.5809.

[20]  H. Tang,et al.  Strongly coupled magnons and cavity microwave photons. , 2014, Physical review letters.

[21]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[22]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[23]  M. Tobar,et al.  Controlling a whispering gallery doublet mode avoided frequency crossing: Strong coupling between photon bosonic and spin degrees of freedom , 2013, 1312.6739.

[24]  A. Vasanelli,et al.  Ultra-strong light–matter coupling for designer Reststrahlen band , 2014 .

[25]  M. Tobar,et al.  The 3D split-ring cavity lattice: a new metastructure for engineering arrays of coupled microwave harmonic oscillators , 2014, 1408.3228.

[26]  H. Walther,et al.  Generation of photon number states on demand via cavity quantum electrodynamics. , 2001, Physical review letters.

[27]  F. Hocke,et al.  High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. , 2012, Physical review letters.

[28]  M. Tobar,et al.  Creating tuneable microwave media from a two-dimensional lattice of re-entrant posts , 2015, 1509.00579.

[29]  Yasunobu Nakamura,et al.  Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. , 2014, Physical review letters.

[30]  Xudong Yu,et al.  Multi-normal-mode splitting of a cavity in the presence of atoms: A step towards the superstrong-coupling regime , 2009, 0906.1129.

[31]  Michael E. Tobar,et al.  High Cooperativity Cavity QED with Magnons at Microwave Frequencies , 2014, 1408.2905.

[32]  G. Kurizki,et al.  Quantum technologies with hybrid systems , 2015, Proceedings of the National Academy of Sciences.

[33]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[34]  M. Flatt'e,et al.  Strong Field Interactions between a Nanomagnet and a Photonic Cavity , 2009, 0907.3926.

[35]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[36]  D. Konstantinov,et al.  Normal-Mode Splitting in the Coupled System of Hybridized Nuclear Magnons and Microwave Photons. , 2014, Physical review letters.

[37]  I. Kolokolov,et al.  The saga of YIG: Spectra, thermodynamics, interaction and relaxation of magnons in a complex magnet , 1993 .

[38]  B. Bhoi,et al.  Photon-magnon coupling in a YIG-film split-ring resonant system , 2014 .

[39]  W. W. Hansen A Type of Electrical Resonator , 1938 .

[40]  A. Imamoğlu Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. , 2008, Physical review letters.

[41]  M. Tobar,et al.  Spin-photon interaction in a cavity with time-reversal symmetry breaking , 2014, 1405.7458.