Treatment of Semantic Heterogeneity in Information Retrieval

The first step to handle semantic heterogeneity should be the attempt to enrich the semantic information about documents, i.e. to fill up the gaps in the documents meta-data automatically. Section 2 describes a set of cascading deductive and heuristic extraction rules, which were developed in the project CARMEN for the domain of Social Sciences. The mapping between different terminologies can be done by using intellectual, statistical and/or neural network transfer modules. Intellectual transfers use cross-concordances between different classification schemes or thesauri. Section 3 describes the creation, storage and handling of such transfers.

[1]  R.-D. Saevecke Die Deutsche Bibliothek , 1980 .

[2]  H. Baumann,et al.  German-English = Deutsch-Englisch , 1931 .

[3]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[4]  Mohand Boughanem,et al.  Mercure at TREC6 , 1997, TREC.

[5]  Thomas Mandl Tolerant Information Retrieval with Backpropagation Networks , 2000, Neural Computing & Applications.

[6]  Günther Palm,et al.  Information storage and effective data retrieval in sparse matrices , 1989, Neural Networks.

[7]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[8]  Thomas Seeger,et al.  Grundlagen der praktischen Information und Dokumentation : ein Handbuch zur Einführung in die fachliche Informationsarbeit , 1996 .

[9]  Teuvo Kohonen,et al.  Self-Organization of Very Large Document Collections: State of the Art , 1998 .

[10]  Norbert Fuhr,et al.  The automatic indexing system AIR/PHYS - from research to applications , 1988, SIGIR '88.

[11]  Georg Dorffner,et al.  Konnektionismus - von neuronalen Netzwerken zu einer natürlichen KI , 1991, Leitfäden der angewandten Informatik.

[12]  Jürgen Krause,et al.  Vocabulary Switching and Automatic Metadata Extraction or How to Get Useful Information from a Digital Library , 2000, DELOS.

[13]  Peter Mutschke,et al.  Thematic mapping on bibliographic databases by cluster analysis: a description of the SDOC environment with SOLIS , 1995 .

[14]  Hsinchun Chen,et al.  Internet Categorization and Search: A Self-Organizing Approach , 1996, J. Vis. Commun. Image Represent..

[15]  Reginald Ferber Automated Indexing with Thesaurus Descriptors: A Co-occurence Based Approach to Multilingual Retrieval , 1997, ECDL.

[16]  Götz Hohenstein,et al.  English — German/Englisch — Deutsch , 2002 .

[17]  Randy R. Appleton,et al.  Grundlagen der Praktischen Information und Dokumentation , 1997 .

[18]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.