Coding Perceptual Decisions: From Single Units to Emergent Signaling Properties in Cortical Circuits.

Spiking activity in single neurons of the primate visual cortex has been tightly linked to perceptual decisions. Any mechanism that reads out these perceptual signals to support behavior must respect the underlying neuroanatomy that shapes the functional properties of sensory neurons. Spatial distribution and timing of inputs to the next processing levels are critical, as conjoint activity of precursor neurons increases the spiking rate of downstream neurons and ultimately drives behavior. I set out how correlated activity might coalesce into a micropool of task-sensitive neurons signaling a particular percept to determine perceptual decision signals locally and for flexible interarea transmission depending on the task context. As data from more and more neurons and their complex interactions are analyzed, the space of computational mechanisms must be constrained based on what is plausible within neurobiological limits. This review outlines experiments to test the new perspectives offered by these extended methods. Expected final online publication date for the Annual Review of Vision Science, Volume 6 is September 15, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.