Multiple-Model State Estimation Based on Variational Bayesian Inference

In this paper, we propose a new approach to state estimation of multiple state-space models. Unlike the traditional methods (including the interacting multiple-model algorithm) that approximate a Gaussian mixture distribution with a single Gaussian distribution, the proposed method approximates the joint probability density functions of the state and model identity through Bayesian inference. It is shown that the proposed method reduces the approximation error considerably, and improves estimation accuracy without increasing computational cost. Analysis of its specific features as well as a potential extension is also presented. Numerical examples with a practically oriented simulation are employed to illustrate the effectiveness of the proposed method.

[1]  James M. Joyce Kullback-Leibler Divergence , 2011, International Encyclopedia of Statistical Science.

[2]  X. R. Li,et al.  Online Bayesian estimation of transition probabilities for Markovian jump systems , 2004, IEEE Transactions on Signal Processing.

[3]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[4]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[5]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[6]  Biao Huang,et al.  Moving horizon estimation for switching nonlinear systems , 2013, Autom..

[7]  S.S. Blackman,et al.  Multiple hypothesis tracking for multiple target tracking , 2004, IEEE Aerospace and Electronic Systems Magazine.

[8]  Arnaud Doucet,et al.  Stochastic sampling algorithms for state estimation of jump Markov linear systems , 2000, IEEE Trans. Autom. Control..

[9]  Y. Boers,et al.  Interacting multiple model particle filter , 2003 .

[10]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[11]  Mübeccel Demirekler,et al.  Risk-sensitive filtering for jump Markov linear systems , 2008, Autom..

[12]  Frank Nielsen,et al.  Statistical exponential families: A digest with flash cards , 2009, ArXiv.

[13]  Myo-Taeg Lim,et al.  Multi-target FIR tracking algorithm for Markov jump linear systems based on true-target decision-making , 2015, Neurocomputing.

[14]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[15]  Vikram Krishnamurthy,et al.  An improvement to the interacting multiple model (IMM) algorithm , 2001, IEEE Trans. Signal Process..

[16]  Y. Bar-Shalom,et al.  IMM estimator versus optimal estimator for hybrid systems , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Matthew J. Beal Variational algorithms for approximate Bayesian inference , 2003 .

[18]  Liping Pang,et al.  A novel interacting multiple model algorithm , 2009, Signal Process..

[19]  S. Glavaski,et al.  On robust Kalman filtering , 1992 .

[20]  K. Fu,et al.  On state estimation in switching environments , 1968 .

[21]  Y. Bar-Shalom,et al.  Multiple-model estimation with variable structure , 1996, IEEE Trans. Autom. Control..

[22]  Amir Averbuch,et al.  Radar target tracking-Viterbi versus IMM , 1991 .

[23]  M. Athans,et al.  State Estimation for Discrete Systems with Switching Parameters , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[24]  Wei Liu,et al.  A novel truncated approximation based algorithm for state estimation of discrete-time Markov jump linear systems , 2011, Signal Process..