Stannylen oder Metallastanna(IV)‐ocan – eine Sache des Formalismus
暂无分享,去创建一个
T. Langer | T. Heine | Rainer Pöttgen | Anthony F. Hill | Jörg Wagler | Erica Brendler | Erik Wächtler | Lyuben Zhechkov
[1] J. Autschbach,et al. (29)Si DFT/NMR observation of spin-orbit effect in metallasilatrane sheds some light on the strength of the metal→silicon interaction. , 2011, Angewandte Chemie.
[2] T. Langer,et al. Ylenes in the M(II)→Si(IV) (M=Si, Ge, Sn) coordination mode. , 2010, Chemistry.
[3] M. Lutz,et al. Oxidative addition of Sn-C bonds on palladium(0): identification of palladium-stannyl species and a facile synthetic route to diphosphinostannylene- palladium complexes , 2010 .
[4] H. Braunschweig,et al. Late-transition-metal complexes as tunable Lewis bases. , 2010, Chemistry.
[5] D. Bourissou,et al. Hypervalent silicon compounds by coordination of diphosphine-silanes to gold. , 2010, Chemistry.
[6] C. Wade,et al. A mercury-->antimony interaction. , 2010, Angewandte Chemie.
[7] C. Wade,et al. A MercuryAntimony Interaction , 2010 .
[8] A. Spek,et al. Dichlorostannylene complexes of group 10 metals, a unique bonding mode stabilized by bridging 2-pyridyldiphenylphosphine ligands. , 2010, Dalton transactions.
[9] A. Willis,et al. Metallaboratranes: Bis- and Tris(methimazolyl)borane Complexes of Group 9 Metal Carbonyls and Thiocarbonyls , 2010 .
[10] Erica Brendler,et al. Metallasilatrane: Palladium(II) und Platin(II) als Elektronenpaardonoren für Silicium(IV) , 2010 .
[11] E. Brendler,et al. Metallasilatranes: palladium(II) and platinum(II) as lone-pair donors to silicon(IV). , 2010, Angewandte Chemie.
[12] D. Bourissou,et al. Phosphine-Boranes and Related Ambiphilic Compounds , 2010 .
[13] D. Bourissou,et al. Gold-silane and gold-stannane complexes: saturated molecules as sigma-acceptor ligands. , 2009, Angewandte Chemie.
[14] K. Jurkschat,et al. Palladium and Molybdenum Complexes of the Heteroleptic Organostannylene [2,6-(Me2NCH2)2C6H3]SnCl , 2009 .
[15] C. Müller,et al. Knüpfung von Thiostannat‐Sn‐Sn‐Bindungen in Lösung: In‐situ‐Bildung des gemischtvalenten funktionalisierten Komplexes [{(RSnIV)2(μ‐S)2}3SnIII2S6] , 2009 .
[16] S. Dehnen,et al. Thiostannate tin-tin bond formation in solution: in situ generation of the mixed-valent, functionalized complex [{(RSn(IV))2(mu-S)2}3Sn(III)2S6]. , 2009, Angewandte Chemie.
[17] Krzysztof Radacki,et al. Komplexe mit dativen Bindungen zwischen d‐ und s‐Block‐Metallen: Synthese und Struktur von [(Cy3P)2Pt‐Be(Cl)X] (X=Cl, Me) , 2009 .
[18] H. Braunschweig,et al. Complexes with dative bonds between d- and s-block metals: synthesis and structure of [(Cy3P)2Pt-Be(Cl)X] (X = Cl, Me). , 2009, Angewandte Chemie.
[19] D. Bourissou,et al. Gold(I) complexes of phosphanyl gallanes: from interconverting to separable coordination isomers. , 2009, Angewandte Chemie.
[20] J. Wagler,et al. Ring Opening of Organosilicon-Substituted Benzoxazolinone: A Convenient Route to Chelating Ureato and Carbamido Ligands , 2008 .
[21] H. Braunschweig,et al. Reactivity of Pt0 complexes toward gallium(III) halides: synthesis of a platinum gallane complex and oxidative addition of gallium halides to Pt0. , 2008, Inorganic chemistry.
[22] L. Wesemann,et al. Iridium Coordination Compounds of Stanna-closo-dodecaborate , 2008 .
[23] D. Bourissou,et al. A Zwitterionic Gold(I) Complex from an Ambiphilic Diphosphino−Alane Ligand , 2008 .
[24] D. Bourissou,et al. Metallaboratranes derived from a triphosphanyl-borane: intrinsic C3 symmetry supported by a Z-type ligand. , 2008, Angewandte Chemie.
[25] Rainer Pöttgen,et al. Oktaedrische Koordinationsverbindungen der Ni, Pd, Pt‐Triade , 2008 .
[26] F. Schappacher,et al. Octahedral coordination compounds of the Ni, Pd, Pt triad. , 2008, Angewandte Chemie.
[27] Krzysztof Radacki,et al. Wechselwirkung zwischen d- und p-Block-Metallen: Synthese und Struktur von Platin-Alan-Addukten† , 2007 .
[28] H. Braunschweig,et al. Interaction between d- and p-block metals: synthesis and structure of platinum-alane adducts. , 2007, Angewandte Chemie.
[29] V. Khrustalev,et al. Can Sn(OCH2CH2NMe2)2 behave as a stannylene? Equatorial-axial isomerism in the tin(II)-iron(0) complex (Me2NCH2CH2O)2Sn-Fe(CO)4. , 2007, Dalton transactions.
[30] Torben Gädt,et al. Stanna-closo-dodecaborate: The Crystal Structure of [Li(thf)3]2[SnB11H11], Vibrational Spectroscopy, Thermal Analysis and DFT Calculations† , 2007 .
[31] H. Werner. Elektronenreiche Halbsandwich‐Komplexe — Metall‐Basen par excellence , 2006 .
[32] Xuemei Zhao,et al. Synthesis and crystal structures of cyclodiazastannoxides fused cyclopentadienyl M–Sn (M = Mo, W) bonded organometallic heterocycle , 2005 .
[33] R. Pöttgen,et al. Structural relationships, phase stability and bonding of compounds PdSnn (n=2, 3, 4) , 2004 .
[34] K. Jurkschat,et al. The Isoelectronic Replacement of E = P+ and Si in the Trinuclear Organotin−Oxo Clusters [Ph2E(OSntBu2)2O·tBu2Sn(OH)2] , 2003 .
[35] E. Tiekink,et al. Observation of inter- and intramolecular CH⋯F hydrogen bonding in Gingras' salt: [n-Bu4N]+[Ph3SnF2]− , 2002 .
[36] G. Yap,et al. Synthesis and structural characterization of the first trialkylguanidinate and hexahydropyramidopyramidinate complexes of tin , 2002 .
[37] H. Gornitzka,et al. (Schiff base) divalent group 14 element species: manganese and iron complexes (Salen)M=Mn(Co)2(eta 5-C5H5) (M14 = Ge, Sn, Pb) and (Salen)Sn=Fe(CO)4. , 2000, Inorganic chemistry.
[38] H. Gornitzka,et al. Transition Metal Complexes of (Schiff Base)Divalent Group 14 Element Species [(salen)M]n=M′(CO)6–n (n = 1, 2; M = Ge, Sn, Pb; M′ = Cr, W) , 2000 .
[39] Andrew J. P. White,et al. Der Stachel des Skorpions: ein Metallaboratran , 1999 .
[40] Hill,et al. The Sting of the Scorpion: A Metallaboratrane. , 1999, Angewandte Chemie.
[41] P. Lippens. Interpretation of the119SnMössbauer isomer shifts in complex tin chalcogenides , 1999 .
[42] M. Reiher,et al. On the Bonding Properties of Diphosphanylmethanide Complexes with the Group‐14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent Oxidation States , 1999 .
[43] R. Pöttgen,et al. New Stannides CaTSn2 (T = Rh, Pd, Ir) and Ca2Pt3Sn5 - Synthesis, Structure and Chemical Bonding , 1999 .
[44] M. Reiher,et al. Bonding Properties of Amidinate Complexes of the Group 14 Elements Silicon, Germanium, Tin, and Lead in Their Divalent and Tetravalent Oxidation States† , 1999 .
[45] O. Walter,et al. Divalent Tin and Lead Compounds EX2 Acting as Bridging Ligands in [{(CO)5M}2EX2]2− (E Sn, Pb; M Cr, Mo, W): Preparation and Properties† , 1997 .
[46] F. Lahoz,et al. Synthesis and structure of Ru{Ph6Sn3(.mu.-OMe)2}(.eta.2-H2)(CO)(PiPr3) containing a tridentate tin donor ligand and coordinated dihydrogen , 1995 .
[47] V. Zanotti,et al. Heats of protonation of transition-metal complexes : the effect of phosphine basicity on metal basicity in CpIr(CO)(PR3) and Fe(CO)3(PR3)2 , 1991 .
[48] J. Cashion,et al. Crystal Structures, Mössbauer Spectra and Reactivity of Sn,II Salicylideneimines , 1990 .
[49] H. Werner. Electron‐Rich Half‐Sandwich Complexes—Metal Bases par excellence , 1983 .
[50] P. Harrison,et al. Derivatives of bivalent germanium, tin, and lead. Part XI. The interaction of tin(II) halides and bis(β-ketoenolates) with di-iron enneacarbonyl , 1975 .
[51] D. Shriver. Transition metal basicity , 1970 .
[52] H. Haendler,et al. Some reactions of tin (II) chloride in nonaqueous solution , 1967 .