Contribution to the Design and Implementation of Portable Tactile Displays for the Visually Impaired

This thesis explores the design, implementation and performance of a new concept for a low-cost, high-resolution, lightweight, compact and highly-portable tactile display. This tactile device is intended to be used in a novel visuo-tactile sensory substitution/supplemen-tation electronic travel aid (ETA) for the blind/visually impaired. Based on the psychophysiology of touch and using Shape Memory Alloys (SMAs) as the actuation technology, a mechatronic device was designed and prototyped to stimulate the sense of touch by creating sensations of contact on the fingertips. The prototype consists of an array of 64 elements spaced 2.6 mm apart that vertically actuates SMA based miniature actuators of 1.5 mm diameter to a height range of 1.4 mm with a pull force of 300 mN up to a 1.5 Hz bandwidth. The full display weights 200 g and its compact dimensions (a cube of 8 cm side-length) make it easy for the user to carry. The display is capable of presenting a wide range of tactile binary information on its 8 x 8 matrix. Moreover, both mechanical and electronic drive designs are easily scalable to larger devices while still being price attractive. Human psychophysics experiments demonstrate the effectiveness of the tactile information transmitted by the display to sighted people and show feasibility in principle of the system as an assistive technology for the blind/visually impaired.

[1]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains , 2000 .

[2]  Vincent Hayward,et al.  STReSS: A Practical Tactile Display System with One Millimeter Spatial Resolution and 700 Hz Refresh Rate , 2003 .

[3]  Toshihiro Omori,et al.  Effect of grain size and texture on pseudoelasticity in Cu–Al–Mn-based shape memory wire , 2005 .

[4]  Jérôme Szewczyk,et al.  Système visuo-tactile d'aide à la mobilité indépendante des déficients visuels dans des environnements 3D non -coopérants , 2004 .

[5]  Jérôme Szewczyk,et al.  A low-cost highly-portable tactile display based on shape memory alloy micro-actuators , 2005, IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, 2005..

[6]  Ramiro Velazquez,et al.  Intelligent Glasses: A New Man-Machine Interface Concept Integrating Computer Vision and Human Tactile Perception , 2003 .

[7]  V. Kafka,et al.  Shape Memory: A New Concept of Explanation and of Mathematical Modelling , 1994 .

[8]  E. J. Graesser,et al.  A Proposed Three-Dimensional Constitutive Model for Shape Memory Alloys , 1994 .

[9]  W. H. Dobelle Artificial vision for the blind by connecting a television camera to the visual cortex. , 2000, ASAIO journal.

[10]  Jérôme Szewczyk,et al.  Touch stimulation through an SMA-actuated micro-mechanism , 2005, Symposium on Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments (WILGA).

[11]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[12]  M Shinohara,et al.  Three-dimensional tactile display for the blind. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[13]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[14]  F. Falk,et al.  Pseudoelastic stress-strain curves of polycrystalline shape memory alloys calculated from single crystal data , 1989 .

[15]  P. Bach-y-Rita,et al.  Form perception with a 49-point electrotactile stimulus array on the tongue: a technical note. , 1998, Journal of rehabilitation research and development.

[16]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[17]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[18]  Ian R Summers,et al.  A broadband tactile array on the fingertip. , 2002, The Journal of the Acoustical Society of America.

[19]  Jérôme Szewczyk,et al.  A Computational–Experimental Thermomechanical Study of Shape Memory Alloy Microcoils and Its Application to the Design of Actuators , 2006 .

[20]  J. Loomis On the tangibility of letters and braille , 1981, Perception & psychophysics.

[21]  P. Potapov,et al.  Time Response of Shape Memory Alloy Actuators , 2000 .

[22]  D. Bolgiano,et al.  A laser cane for the blind , 1967 .

[23]  G. Guénin,et al.  Influence of the recovery and recrystallization processes on the martensitic transformation of cold worked equiatomic Ti–Ni alloy , 2003 .

[24]  Mohamed Benali Khoudja Vital : un nouveau système de communication tactile , 2004 .

[25]  Marcel Berveiller,et al.  Potentiel pseudoelastique et plasticite de transformation martensitique dans les monoet polycristaux metalliques , 1987 .

[26]  Dominiek Reynaerts,et al.  A MICRO ROBOTIC ARM FOR A SELF PROPELLING COLONOSCOPE , 1998 .

[27]  Toshi Takamori,et al.  Artificial tactile feel display using soft gel actuators , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[28]  C. Lenay,et al.  SENSORY SUBSTITUTION: LIMITS AND PERSPECTIVES , 2003 .

[29]  Emerson Foulke,et al.  Tactile acuity, aging, and braille reading in long-term blindness , 1996 .

[30]  Michael E. Selzer,et al.  Handbook of Physiology, Section 1 , 1978, Neurology.

[31]  Gregory P. Carman,et al.  Three-dimensional thin-film shape memory alloy microactuator with two-way effect , 2002 .

[32]  A. Planes,et al.  THERMODYNAMICS AND HYSTERESIS BEHAVIOUR OF THERMOELASTIC MARTENSITIC TRANSFORMATIONS , 1991 .

[33]  Hisaaki Tobushi,et al.  Deformation of a Shape Memory Alloy Helical Spring : Analysis Based on Stress-Strain-Temperature Relation , 1991 .

[34]  Naoki Kawakami,et al.  3D Form Display with Shape Memory Alloy , 2003, ICAT.

[35]  Johannes Schemmel,et al.  THE HEIDELBERG TACTILE VISION SUBSTITUTION SYSTEM , 2000 .

[36]  Michael Wiertlewski,et al.  A compact tactile display for the blind with shape memory alloys , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[37]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[38]  Peter B. L. Meijer,et al.  An experimental system for auditory image representations , 1992, IEEE Transactions on Biomedical Engineering.

[39]  M. Hafez,et al.  3D tactile rendering based on bi (multi) stable SMA monolithic systems , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[40]  Vincent de Sars Conception et commande d' une micro-structure active à haute mobilité : application à la chirurgie mini-invasive , 2005 .

[41]  J. Hakkinen,et al.  Postural stability and sickness symptoms after HMD use , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[42]  René Farcy,et al.  Triangulating laser profilometer as a three-dimensional space perception system for the blind. , 1997 .

[43]  Christopher R. Wagner,et al.  A compliant tactile display for teletaction , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[44]  Wolfgang Beitz,et al.  Dubbel Handbook of Mechanical Engineering , 1994 .

[45]  Jérôme Szewczyk,et al.  Miniature Shape Memory Alloy Actuator for Tactile Binary Information Display , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[46]  Richard M. Satava,et al.  Interactive Technology and the New Paradigm for Healthcare , 1995 .

[47]  R. Johansson,et al.  Tactile sensory coding in the glabrous skin of the human hand , 1983, Trends in Neurosciences.

[48]  L. Kay An ultrasonic sensing probe as a mobility aid for the blind , 1964 .

[49]  Koji Ikuta,et al.  Micro/miniature shape memory alloy actuator , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[50]  Jordi Ortín,et al.  Thermodynamics of Thermoelastic Martensitic Transformations , 1989 .

[51]  H. Tobushi,et al.  Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life , 2000 .

[52]  Robert D. Howe,et al.  Mechanical Design and Control of a High-Bandwidth Shape Memory Alloy Tactile Display , 1997, ISER.

[53]  Flavien Maingreaud Une contribution à la perception de l'espace et son intégration dans une aide pour la navigation des déficients visuels , 2005 .

[54]  Johann Borenstein,et al.  The NavBelt - A Computerized Multi-Sensor Travel Aid for Active Guidance of the Blind , 1990 .

[55]  E. Patoor,et al.  THERMOMECHANICAL CONSTITUTIVE EQUATIONS FOR SHAPE MEMORY ALLOYS , 1991 .

[56]  Iwan Ulrich,et al.  The GuideCane-applying mobile robot technologies to assist the visually impaired , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[57]  Thomas J. Pence,et al.  A constitutive model for hysteretic phase transition behavior , 1994 .

[58]  Mircea R. Stan,et al.  Design and analysis of crossbar circuits for molecular nanoelectronics , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[59]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[60]  K. Tanaka A THERMOMECHANICAL SKETCH OF SHAPE MEMORY EFFECT: ONE-DIMENSIONAL TENSILE BEHAVIOR , 1986 .

[61]  E. Pissaloux,et al.  Design and characterization of a shape memory alloy based micro-actuator for tactile stimulation , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[62]  T. Ikeda,et al.  Micromechanical modeling of polycrystalline shape-memory alloys including thermo-mechanical coupling , 2003 .

[63]  P. M. Taylor,et al.  The design and control of a tactile display based on shape memory alloys , 1997, Proceedings of International Conference on Robotics and Automation.

[64]  Heinrich H. Bülthoff,et al.  Cross-modal perception of actively explored objects , 2003 .

[65]  R. Stone Haptic Feedback : A Potted History , From Telepresence to Virtual Reality , 2000 .

[66]  R. Andrew Russell,et al.  Improving the response of SMA actuators , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[67]  P. M. Taylor,et al.  Advances in an electrorheological fluid based tactile array , 1998 .

[68]  E. E. Pissaloux A vision system design for blinds mobility assistance , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[69]  Susan J. Lederman,et al.  Design and Performance of a Tactile Shape Display Using RC Servomotors (Short Paper) , 2004 .