“Slow” skeletal muscles across vertebrate species

[1]  F. Ono,et al.  Zebrafish mutants of the neuromuscular junction: swimming in the gene pool , 2015, The Journal of Physiological Sciences.

[2]  F. Ono,et al.  A Single Mutation in the Acetylcholine Receptor δ-Subunit Causes Distinct Effects in Two Types of Neuromuscular Synapses , 2014, The Journal of Neuroscience.

[3]  P. Ingham,et al.  Control of muscle fibre-type diversity during embryonic development: The zebrafish paradigm , 2013, Mechanisms of Development.

[4]  D. McLean,et al.  A Gradient in Endogenous Rhythmicity and Oscillatory Drive Matches Recruitment Order in an Axial Motor Pool , 2012, The Journal of Neuroscience.

[5]  Z. Puthucheary,et al.  Genetic Influences in Sport and Physical Performance , 2011, Sports medicine.

[6]  P. Brehm,et al.  An acetylcholine receptor lacking both γ and ε subunits mediates transmission in zebrafish slow muscle synapses , 2011, The Journal of general physiology.

[7]  Hiromi Hirata,et al.  Developmental transition of touch response from slow muscle-mediated coilings to fast muscle-mediated burst swimming in zebrafish. , 2011, Developmental biology.

[8]  P. May,et al.  Evidence that the extraocular motor nuclei innervate monkey palisade endings , 2011, Neuroscience Letters.

[9]  A. Wernig,et al.  Changes in acetylcholine receptor function induce shifts in muscle fiber type composition , 2008, The FEBS journal.

[10]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[11]  P. Brehm,et al.  An Electrically Coupled Network of Skeletal Muscle in Zebrafish Distributes Synaptic Current , 2006, The Journal of general physiology.

[12]  H. Kaminski,et al.  Molecular architecture of the neuromuscular junction , 2006, Muscle & nerve.

[13]  Melina E. Hale,et al.  Swimming of larval zebrafish: fin–axis coordination and implications for function and neural control , 2004, Journal of Experimental Biology.

[14]  P. Brehm,et al.  Increased neuromuscular activity causes axonal defects and muscular degeneration , 2004, Development.

[15]  G. Bewick,et al.  Postnatal emergence of mature release properties in terminals of rat fast‐ and slow‐twitch muscles , 2004, The European journal of neuroscience.

[16]  S. Buckingham,et al.  Sodium and potassium currents of larval zebrafish muscle fibres , 2004, Journal of Experimental Biology.

[17]  D. MacArthur,et al.  ACTN3 genotype is associated with human elite athletic performance. , 2003, American journal of human genetics.

[18]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres , 2002, Nature.

[19]  S. Higashijima,et al.  Paralytic Zebrafish Lacking Acetylcholine Receptors Fail to Localize Rapsyn Clusters to the Synapse , 2001, The Journal of Neuroscience.

[20]  H. Brinkmeier,et al.  Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. , 2000, Physiological reviews.

[21]  I. Billig,et al.  Identification of nerve endings in cat extraocular muscles , 1997, The Anatomical record.

[22]  M. Westerfield,et al.  Identification of separate slow and fast muscle precursor cells in vivo, prior to somite formation. , 1996, Development.

[23]  C. Sylvén,et al.  Different responses of skeletal muscle following sprint training in men and women , 1996, European Journal of Applied Physiology and Occupational Physiology.

[24]  C. Franzini-armstrong,et al.  Differences in the histogenesis of EDL and diaphragm in rat , 1992, Developmental dynamics : an official publication of the American Association of Anatomists.

[25]  L. Henderson,et al.  The single-channel basis for the slow kinetics of synaptic currents in vertebrate slow muscle fibers , 1989, Neuron.

[26]  S. Schuetze,et al.  Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle , 1988, Nature.

[27]  M. Westerfield,et al.  Function of identified motoneurones and co‐ordination of primary and secondary motor systems during zebra fish swimming. , 1988, The Journal of physiology.

[28]  Joseph R. Fetcho,et al.  A review of the organization and evolution of motoneurons innervating the axial musculature of vertebrates , 1987, Brain Research Reviews.

[29]  M. Westerfield,et al.  Identified motoneurons and their innervation of axial muscles in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J. Owens,et al.  Comparative development of end‐plate currents in two muscles of Xenopus laevis. , 1986, The Journal of physiology.

[31]  V. Fedorov,et al.  Postsynaptic currents in different types of frog muscle fibre , 1982, Pflügers Archiv.

[32]  R. Miledi,et al.  Properties of postsynaptic channels induced by acetylcholine in different frog muscle fibres , 1981, Nature.

[33]  D. J. Chiarandini,et al.  Electrophysiological identification of two types of fibres in rat extraocular muscles. , 1979, The Journal of physiology.

[34]  R. Parsons,et al.  Synaptic channel gating differences at snake twitch and slow neuromuscular junctions , 1978, Nature.

[35]  T. Lentz,et al.  Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. , 1977, Developmental biology.

[36]  T. Kikuchi,et al.  Developmental aspects of the innervation of skeletal muscle fibers in the chick embryo , 1976, Cell and Tissue Research.

[37]  M. Brooke,et al.  THREE "MYOSIN ADENOSINE TRIPHOSPHATASE" SYSTEMS: THE NATURE OF THEIR pH LABILITY AND SULFHYDRYL DEPENDENCE , 1970, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[38]  S Salmons,et al.  The influence of activity on some contractile characteristics of mammalian fast and slow muscles , 1969, The Journal of physiology.

[39]  W. Engel,et al.  A histochemical-physiological correlation of frog skeletal muscle fibers. , 1967, The American journal of physiology.

[40]  S. E. Dietert,et al.  THE DEMONSTRATION OF DIFFERENT TYPES OF MUSCLE FIBERS IN HUMAN EXTRAOCULAR MUSCLE FIBERS IN HUMAN EXTRAOCULAR MUSCLE BY ELECTRON MICROSCOPY AND CHOLINESTERASE STAINING. , 1965, Investigative ophthalmology.

[41]  A. Hess Structural differences of fast and slow extrafusal muscle fibres and their nerve endings in chickens , 1961, The Journal of physiology.

[42]  J. Eccles,et al.  Differentiation of fast and slow muscles in the cat hind limb , 1960, The Journal of physiology.

[43]  J. Eccles,et al.  Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses , 1960, The Journal of physiology.

[44]  B. L. Ginsborg,et al.  The electrical properties of the slow muscle fibre membrane , 1956, The Journal of physiology.

[45]  S. W. Kuffler,et al.  Properties of the ‘slow’ skeletal muscle fibres of the frog * , 1953, The Journal of physiology.

[46]  H. Sommerkamp Das Substrat der Dauerverkürzung am Froschmuskel , 1928, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie.

[47]  H. Sommerkamp Das Substrat der Dauerverkürzung am Froschmuskel (physiologische und pharmakologische Sonderstellung bestimmter Muskelfasern) , 2005, Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie.

[48]  H. Eppenberger,et al.  Myosin types in human skeletal muscle fibers , 2004, Histochemistry.

[49]  Jiandie D. Lin,et al.  Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. , 2002, Nature.

[50]  U. Proske,et al.  Vertebrate slow muscle: its structure, pattern of innervation, and mechanical properties. , 1984, Physiological reviews.

[51]  V. Fedorov,et al.  The time course of postsynaptic currents in fast and slow junctions and its alteration by cholinesterase inhibition. , 1979, Progress in brain research.

[52]  R. Alvarado-Mallart,et al.  The palisade endings of cat extraocular muscles: a light and electron microscope study. , 1979, Tissue & cell.

[53]  J. Browne The contractile properties of slow muscle fibres in sheep extraocular muscle. , 1976, Journal of Physiology.

[54]  R. Armstrong,et al.  Effect of training on enzyme activity and fiber composition of human skeletal muscle. , 1973, Journal of applied physiology.

[55]  A. Hess Vertebrate slow muscle fibers. , 1970, Physiological reviews.

[56]  A. Peters,et al.  Observations on the terminal innervation of segmental muscle fibres in amphibia. , 1960, Acta anatomica.

[57]  R. C Developmental Aspects of the Innervation of Skeletal Muscle Fibers in the Chick Embryo * , 2022 .