High-Dimensional Random Fields and Random Matrix Theory

Our goal is to discuss in detail the calculation of the mean number of stationary points and minima for random isotropic Gaussian fields on a sphere as well as for stationary Gaussian random fields in a background parabolic confinement. After developing the general formalism based on the high-dimensional Kac-Rice formulae we combine it with the Random Matrix Theory (RMT) techniques to perform analysis of the random energy landscape of $p-$spin spherical spinglasses and a related glass model, both displaying a zero-temperature one-step replica symmetry breaking glass transition as a function of control parameters (e.g. a magnetic field or curvature of the confining potential). A particular emphasis of the presented analysis is on understanding in detail the picture of "topology trivialization" (in the sense of drastic reduction of the number of stationary points) of the landscape which takes place in the vicinity of the zero-temperature glass transition in both models. We will reveal the important role of the GOE "edge scaling" spectral region and the Tracy-Widom distribution of the maximal eigenvalue of GOE matrices for providing an accurate quantitative description of the universal features of the topology trivialization scenario.

[1]  S. Rice Mathematical analysis of random noise , 1944 .

[2]  M. Kac,et al.  On the Average Number of Real Roots of a Random Algebraic Equation (II) , 1948 .

[3]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  M. Lax,et al.  Impurity-Band Tails in the High-Density Limit. II. Higher Order Corrections , 1967 .

[5]  D. Thouless,et al.  Spherical Model of a Spin-Glass , 1976 .

[6]  B. Halperin,et al.  Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns , 1982 .

[7]  K. Farahmand On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .

[8]  J. Kurchan,et al.  Replica trick to calculate means of absolute values: applications to stochastic equations , 1991 .

[9]  A. Crisanti,et al.  The sphericalp-spin interaction spin glass model: the statics , 1992 .

[10]  P. Forrester The spectrum edge of random matrix ensembles , 1993 .

[11]  David S. Dean,et al.  FULL DYNAMICAL SOLUTION FOR A SPHERICAL SPIN-GLASS MODEL , 1995 .

[12]  Freund Saddles, singularities, and extrema in random phase fields. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  On the dynamics of a spherical spin-glass in a magnetic field , 1995, cond-mat/9505149.

[14]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[15]  Non-equilibrium dynamics of simple spherical spin models , 1999, cond-mat/9904329.

[16]  I Giardina,et al.  Energy landscape of a lennard-jones liquid: statistics of stationary points. , 2000, Physical review letters.

[17]  A. Dembo,et al.  Aging of spherical spin glasses , 2001 .

[18]  Role of saddles in mean-field dynamics above the glass transition , 2001, cond-mat/0104537.

[19]  C. Tracy,et al.  Distribution Functions for Largest Eigenvalues and Their Applications , 2002, math-ph/0210034.

[20]  M. Jacob,et al.  About Les Houches , 2002 .

[21]  REAL ROOTS OF RANDOM POLYNOMIALS: UNIVERSALITY CLOSE TO ACCUMULATION POINTS , 2003, math-ph/0309014.

[22]  Supersymmetric complexity in the Sherrington-Kirkpatrick model. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Y. Fyodorov Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. , 2004 .

[24]  Random Matrices Theory Applied to Specific Heat of Conventional Superconducting Nano-particles , 2004 .

[25]  M A Moore,et al.  Complexity of Ising spin glasses. , 2004, Physical review letters.

[26]  Critical Points and Supersymmetric Vacua I , 2004, math/0402326.

[27]  Y. Fyodorov Counting Stationary Points of Random Landscapes as a Random Matrix Problem , 2005, cond-mat/0507059.

[28]  Random Fields and Spin Glasses: Preface , 2006 .

[29]  S. Majumdar,et al.  Large deviations of extreme eigenvalues of random matrices. , 2006, Physical review letters.

[30]  I. Giardina,et al.  Random Fields and Spin Glasses , 2006 .

[31]  Richard Easther,et al.  Cosmology from random multifield potentials , 2005, hep-th/0512050.

[32]  Counting String/M Vacua , 2006, math-ph/0603066.

[33]  Yan V Fyodorov,et al.  Replica Symmetry Breaking Condition Exposed by Random Matrix Calculation of Landscape Complexity , 2007, cond-mat/0702601.

[34]  A. Bray,et al.  Statistics of critical points of Gaussian fields on large-dimensional spaces. , 2006, Physical review letters.

[35]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[36]  Classical particle in a box with random potential: Exploiting rotational symmetry of replicated Hamiltonian , 2006, cond-mat/0610035.

[37]  Asymptotics and Dimensional Dependence of the Number of Critical Points of Random Holomorphic Sections , 2007, math-ph/0703076.

[38]  C. Pichon,et al.  Invariant joint distribution of a stationary random field and its derivatives: Euler characteristic and critical point counts in 2 and 3D , 2009, 0907.1437.

[39]  J. Azaïs,et al.  Level Sets and Extrema of Random Processes and Fields , 2009 .

[40]  Massimo Vergassola,et al.  Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices. , 2008, Physical review letters.

[41]  C. Tracy,et al.  The Distributions of Random Matrix Theory and their Applications , 2009 .

[42]  P. Forrester Log-Gases and Random Matrices (LMS-34) , 2010 .

[43]  Antonio Auffinger,et al.  Random Matrices and Complexity of Spin Glasses , 2010, 1003.1129.

[44]  S. Majumdar,et al.  Large deviations of the maximal eigenvalue of random matrices , 2010, 1009.1945.

[45]  Critical sets of random linear combinations of eigenfunctions , 2011 .

[46]  D. Zaporozhets,et al.  On random surface area , 2011, 1102.3509.

[47]  Complexity of random smooth functions of many variables , 2011 .

[48]  Extreme value statistics distributions in spin glasses. , 2011, Physical review letters.

[49]  L. Nicolaescu Critical sets of random smooth functions on compact manifolds , 2011, 1101.5990.

[50]  O. Agam,et al.  Critical point correlations in random Gaussian fields , 2011, 1111.5286.

[51]  Damien Gayet,et al.  Betti numbers of random real hypersurfaces and determinants of random symmetric matrices , 2012, 1207.1579.

[52]  Spectral density asymptotics for Gaussian and Laguerre β-ensembles in the exponentially small region , 2011, 1111.1350.

[53]  T. Battefeld,et al.  On the Unlikeliness of Multi-Field Inflation: Bounded Random Potentials and our Vacuum , 2012, 1203.3941.

[54]  L. Nicolaescu Complexity of random smooth functions on compact manifolds , 2012, 1201.4972.

[55]  Yan V Fyodorov,et al.  Critical behavior of the number of minima of a random landscape at the glass transition point and the Tracy-Widom distribution. , 2012, Physical review letters.

[56]  S. Zelditch,et al.  Critical values of random analytic functions on complex manifolds , 2012, 1212.4762.

[57]  Antonio Auffinger,et al.  Complexity of random smooth functions on the high-dimensional sphere , 2011, 1110.5872.

[58]  D. Mehta,et al.  Energy Landscape of the Finite-Size Mean-field 3-Spin Spherical Model , 2013, 1303.1520.

[59]  Dhagash Mehta,et al.  Energy landscape of the finite-size spherical three-spin glass model. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  S. Majumdar,et al.  Top eigenvalue of a random matrix: large deviations and third order phase transition , 2013, 1311.0580.

[61]  Jean-Yves Welschinger,et al.  EXPECTED TOPOLOGY OF RANDOM REAL ALGEBRAIC SUBMANIFOLDS , 2013, Journal of the Institute of Mathematics of Jussieu.

[62]  P. L. Doussal,et al.  Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization , 2013, 1304.0024.