α-Latrotoxin Stimulates a Novel Pathway of Ca2+-Dependent Synaptic Exocytosis Independent of the Classical Synaptic Fusion Machinery

α-Latrotoxin induces neurotransmitter release by stimulating synaptic vesicle exocytosis via two mechanisms: (1) A Ca2+-dependent mechanism with neurexins as receptors, in which α-latrotoxin acts like a Ca2+ ionophore, and (2) a Ca2+-independent mechanism with CIRL/latrophilins as receptors, in which α-latrotoxin directly stimulates the transmitter release machinery. Here, we show that the Ca2+-independent release mechanism by α-latrotoxin requires the synaptic SNARE-proteins synaptobrevin/VAMP and SNAP-25, and, at least partly, the synaptic active-zone protein Munc13-1. In contrast, the Ca2+-dependent release mechanism induced by α-latrotoxin does not require any of these components of the classical synaptic release machinery. Nevertheless, this type of exocytotic neurotransmitter release appears to fully operate at synapses, and to stimulate exocytosis of the same synaptic vesicles that participate in physiological action potential-triggered release. Thus, synapses contain two parallel and independent pathways of Ca2+-triggered exocytosis, a classical, physiological pathway that operates at the active zone, and a novel reserve pathway that is recruited only when Ca2+ floods the synaptic terminal.

[1]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[2]  J. Rizo,et al.  Synaptic vesicle fusion , 2008, Nature Structural &Molecular Biology.

[3]  T. Südhof,et al.  Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. , 2007, Journal of neurophysiology.

[4]  J. Lang,et al.  Splice variant 3, but not 2 of receptor protein‐tyrosine phosphatase σ can mediate stimulation of insulin‐secretion by α‐latrotoxin , 2006 .

[5]  T. Südhof,et al.  Rabphilin regulates SNARE‐dependent re‐priming of synaptic vesicles for fusion , 2006, The EMBO journal.

[6]  T. Südhof,et al.  Structural Determinants of Synaptobrevin 2 Function in Synaptic Vesicle Fusion , 2006, The Journal of Neuroscience.

[7]  T. Südhof,et al.  Autonomous Function of Synaptotagmin 1 in Triggering Synchronous Release Independent of Asynchronous Release , 2005, Neuron.

[8]  Zhong-Ping Feng,et al.  N-Terminal Insertion and C-Terminal Ankyrin-Like Repeats of α-Latrotoxin Are Critical for Ca2+-Dependent Exocytosis , 2005, The Journal of Neuroscience.

[9]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  T. Südhof,et al.  Synaptobrevin is essential for fast synaptic-vesicle endocytosis , 2004, Nature Cell Biology.

[11]  R. Ribchester,et al.  Mutant alpha-latrotoxin (LTXN4C) does not form pores and causes secretion by receptor stimulation: this action does not require neurexins. , 2003, The Journal of biological chemistry.

[12]  N. Emptage,et al.  The α-Latrotoxin Mutant LTXN4C Enhances Spontaneous and Evoked Transmitter Release in CA3 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[13]  K. Ichtchenko,et al.  Protein-tyrosine Phosphatase-ς Is a Novel Member of the Functional Family of α-Latrotoxin Receptors* , 2002, The Journal of Biological Chemistry.

[14]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[15]  T. Südhof,et al.  Role of calcium in neurotransmitter release evoked by α-latrotoxin or hypertonic sucrose , 2000, Neuroscience.

[16]  B. L. de Groot,et al.  Exocytosis requires asymmetry in the central layer of the SNARE complex , 2000, The EMBO journal.

[17]  C. Van Renterghem,et al.  α‐Latrotoxin forms calcium‐permeable membrane pores via interactions with latrophilin or neurexin , 2000, The European journal of neuroscience.

[18]  T. Südhof,et al.  α‐latrotoxin triggers transmitter release via direct insertion into the presynaptic plasma membrane , 2000, The EMBO journal.

[19]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[20]  Thomas C. Südhof,et al.  Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles , 1999, Nature.

[21]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[22]  T. Südhof,et al.  Neurexins Are Functional α-Latrotoxin Receptors , 1999, Neuron.

[23]  T. Südhof,et al.  alpha-Latrotoxin receptor CIRL/latrophilin 1 (CL1) defines an unusual family of ubiquitous G-protein-linked receptors. G-protein coupling not required for triggering exocytosis. , 1998, The Journal of biological chemistry.

[24]  T. Südhof,et al.  α‐Latrotoxin action probed with recombinant toxin: receptors recruit α‐latrotoxin but do not transduce an exocytotic signal , 1998, The EMBO journal.

[25]  T. Südhof,et al.  Neurexin Iα Is a Major α-Latrotoxin Receptor That Cooperates in α-Latrotoxin Action* , 1998, The Journal of Biological Chemistry.

[26]  B. Gähwiler,et al.  Ca2+ or Sr2+ Partially Rescues Synaptic Transmission in Hippocampal Cultures Treated with Botulinum Toxin A and C, But Not Tetanus Toxin , 1997, The Journal of Neuroscience.

[27]  E. Grishin,et al.  α-Latrotoxin Receptor, Latrophilin, Is a Novel Member of the Secretin Family of G Protein-coupled Receptors* , 1997, The Journal of Biological Chemistry.

[28]  A. R. Little,et al.  α-Latrotoxin Stimulates Exocytosis by the Interaction with a Neuronal G-Protein-Coupled Receptor , 1997, Neuron.

[29]  B. Gähwiler,et al.  Calcium-independent actions of alpha-latrotoxin on spontaneous and evoked synaptic transmission in the hippocampus. , 1996, Journal of neurophysiology.

[30]  O. Shamotienko,et al.  Isolation and Biochemical Characterization of a Ca2+-independent α-Latrotoxin-binding Protein* , 1996, The Journal of Biological Chemistry.

[31]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[32]  W. Betz,et al.  Monitoring of Black Widow Spider Venom (BWSV) induced exo- and endocytosis in living frog motor nerve terminals with FM1-43 , 1995, Neuropharmacology.

[33]  T. Südhof,et al.  Mammalian Homologues of Caenorhabditis elegans unc-13 Gene Define Novel Family of C2-domain Proteins (*) , 1995, The Journal of Biological Chemistry.

[34]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[35]  W. Kloot,et al.  Quantal acetylcholine release at the vertebrate neuromuscular junction. , 1994, Physiological reviews.

[36]  F. Valtorta,et al.  α-Latrotoxin channels in neuroblastoma cells , 1994, The Journal of Membrane Biology.

[37]  L. Tretter,et al.  Lack of involvement of [Ca2+]i in the external Ca2+-independent release of acetylcholine evoked by veratridine, ouabain and α-latrotoxin: Possible role of [Na+]i , 1993, Journal of Physiology-Paris.

[38]  T. Südhof,et al.  Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. , 1992, Science.

[39]  J. Meldolesi,et al.  Mode of action of alpha-latrotoxin: role of divalent cations in Ca2(+)-dependent and Ca2(+)-independent effects mediated by the toxin. , 1990, Molecular pharmacology.

[40]  A. Mazur,et al.  Ca2+-dependent recycling of synaptic vesicles at the frog neuromuscular junction , 1980, The Journal of cell biology.

[41]  L. Rubin,et al.  Double mode of action of black widow spider venom on frog neuromuscular junction , 1978, Journal of neurocytology.

[42]  P. Siekevitz,et al.  Purification from black widow spider venom of a protein factor causing the depletion of synaptic vesicles at neuromuscular junctions , 1976, The Journal of cell biology.

[43]  E. Furshpan The effects of osmotic pressure changes on the spontaneous activity at motor nerve endings , 1956, The Journal of physiology.

[44]  B. Katz,et al.  Spontaneous subthreshold activity at motor nerve endings , 1952, The Journal of physiology.

[45]  A. Rohou,et al.  α-Latrotoxin and Its Receptors , 2008 .

[46]  J. Lang,et al.  Splice variant 3, but not 2 of receptor protein-tyrosine phosphatase sigma can mediate stimulation of insulin-secretion by alpha-latrotoxin. , 2006, Journal of cellular biochemistry.

[47]  A. Chanturiya,et al.  Correlations between changes in membrane capacitance induced by changes in ionic environment and the conductance of channels incorporated into bilayer lipid membranes , 2004, The Journal of Membrane Biology.

[48]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.

[49]  L. Donald Partridge,et al.  Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis , 2002, Nature Neuroscience.

[50]  T. Südhof alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. , 2001, Annual review of neuroscience.

[51]  Marin van Heel,et al.  Structure of α-latrotoxin oligomers reveals that divalent cation-dependent tetramers form membrane pores , 2000, Nature Structural Biology.