Abundances and Physical Conditions in the Interstellar Gas toward HD 185418

We present a study of the abundances and physical conditions in the interstellar gas toward the moderately reddened B0.5 V star HD 185418. This star is located at (l, b) = (53°, - 22) and has an estimated distance of 790 pc and a reddening E(B-V) = 0.50. This work is based on the analysis of Far Ultraviolet Spectroscopic Explorer (FUSE) and Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) spectra covering the range from 912 to 1361 A. We used both sets of far-ultraviolet data, together with high-resolution optical data, to derive accurate gas-phase column densities for important interstellar species such as C I, C I*, C I**, N I, O I, O I*, Mg II, S I, S III, Cl I, Mn II, Fe II, Ni II, Cu II, Ge II, Kr I, and CO. Numerous lines of H2 are present in the FUSE spectra, with a kinetic temperature for the lowest rotational levels T01 = 100 ± 15 K. Analysis of the C I fine-structure excitation at that temperature implies an average local density of hydrogen nH = 6.3 ± 2.5 cm-3. Chemical arguments based on analyses of CH, CH+, and C2 indicate that a fraction of the CH (≥20%) is formed as a by-product of nonequilibrium CH+ synthesis. The electron density ne, derived under the assumption of photoionization equilibrium, ranges from 0.03 to 0.32 cm-3 for the six different neutral/first-ion ratios considered. The relatively complex component structure seen in high-resolution spectra of K I, Na I, and Ca II, the relatively low average volume densities, the modest molecular fraction f(H2) = 0.44, and the measured depletions all indicate no evidence for the presence of translucent components in the light path. The line of sight rather contains a mixture of cold and warm neutral diffuse gas. The detection of Si III and S III indicates the presence of some ionized gas (at a 1% level) along the line of sight. We could not determine unambiguously whether this ionized gas was physically related to the neutral components.

[1]  S. Federman,et al.  Nonthermal Chemistry in Diffuse Clouds with Low Molecular Abundances , 2003, astro-ph/0302133.

[2]  J. Weingartner,et al.  Electron-Ion Recombination on Grains and Polycyclic Aromatic Hydrocarbons , 2001, astro-ph/0105237.

[3]  R. Wimmer–Schweingruber Solar and Galactic Composition , 2001 .

[4]  D. Massa,et al.  An analysis of the shapes of ultraviolet extinction curves. II - The far-UV extinction , 1988 .

[5]  Emilie Habart,et al.  H2 formation and excitation in the diffuse interstellar medium , 2002 .

[6]  D. A. Ramsay,et al.  Some New Emission Bands of the A1Π - X1Σ+ System of CH+ , 1982 .

[7]  J. Lawler,et al.  Laboratory Measurement of the Fe II 114.4938 Nanometer Oscillator Strength , 2002 .

[8]  D. York,et al.  The interstellar medium near the sun. II - The line of sight to Alpha Virginis , 1979 .

[9]  E. Jenkins A Procedure for Correcting the Apparent Optical Depths of Moderately Saturated Interstellar Absorption Lines , 1996, astro-ph/9605010.

[10]  D. Welty,et al.  A High-Resolution Survey of Interstellar K I Absorption , 1996 .

[11]  Edward L. Fitzpatrick,et al.  An Analysis of the Shapes of Ultraviolet Extinction Curves. III. an Atlas of Ultraviolet Extinction Curves , 1990 .

[12]  L. Hobbs Observations of Interstellar CA i Lines , 1971 .

[13]  D. Morton,et al.  A Compilation of Electronic Transitions in the CO Molecule and the Interpretation of Some Puzzling Interstellar Absorption Features , 1994 .

[14]  H. Liszt Gas - phase recombination, grain neutralization and cosmic - ray ionization in diffuse gas , 2002, astro-ph/0211369.

[15]  John H. Black,et al.  Comprehensive models of diffuse interstellar clouds : physical conditions and molecular abundances , 1986 .

[16]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[17]  D. York,et al.  The Diffuse Interstellar Clouds toward 23 Orionis , 1999, astro-ph/9905234.

[18]  S. Federman,et al.  OSCILLATOR STRENGTHS FOR BX, CX, AND EX TRANSITIONS IN CARBON MONOXIDE , 2001, astro-ph/0101027.

[19]  E. Jenkins,et al.  A survey of interstellar C I - Insights on carbon abundances, UV grain albedos, and pressures in the interstellar medium , 1979 .

[20]  D. Morton,et al.  High-Resolution Observations of Interstellar Ca I Absorption—Implications for Depletions and Electron Densities in Diffuse Clouds , 2003, astro-ph/0302089.

[21]  J. Black,et al.  The Cosmic Abundance of Deuterium , 1973 .

[22]  J. Lauroesch,et al.  Space Telescope Imaging Spectrograph Observations of Interstellar Oxygen and Krypton in Translucent Clouds , 2001 .

[23]  B. Savage,et al.  The analysis of apparent optical depth profiles for interstellar absorption lines , 1991 .

[24]  S. Federman,et al.  The Amount of CH Produced during CH+ Synthesis in Interstellar Clouds* , 1997 .

[25]  D. York,et al.  Observations of interstellar chlorine and phosphorus , 1978 .

[26]  Paule Sonnentrucker,et al.  A Far Ultraviolet Spectroscopic Explorer Survey of Interstellar Molecular Hydrogen in Translucent Clouds , 2002 .

[27]  George Sonneborn,et al.  Deuterium Abundance toward G191-B2B: Results from the FUSE Mission , 2002 .

[28]  J. Shull,et al.  The ionization equilibrium of astrophysically abundant elements , 1982 .

[29]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[30]  T. Snow The depletion of interstellar elements and the interaction between gas and dust in space , 1975 .

[31]  J. Black,et al.  Large molecules in diffuse interstellar clouds , 1988 .

[32]  D. York,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 192639 , 2002, astro-ph/0205403.

[33]  The origin of the elements. , 1979 .

[34]  T. Snow,et al.  Gas-Phase Iron Abundances and Depletions in Translucent Interstellar Lines of Sight from Far Ultraviolet Spectroscopic Explorer Observations of Fe II Lines , 2002 .

[35]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[36]  J. Cardelli,et al.  Carbon in the Diffuse Interstellar Medium , 1997 .

[37]  S. Federman,et al.  Accurate oscillator strengths for interstellar ultraviolet lines of Cl I , 1993 .

[38]  Edward B. Jenkins,et al.  The Distribution of Thermal Pressures in the Interstellar Medium , 2001 .

[39]  A. Witt,et al.  The Interstellar Radiation Density Between 1250 and 4250 A , 1973 .

[40]  S. Federman,et al.  Oscillator strengths of selected resonance transitions in neutral sulfur , 1993 .

[41]  D. York,et al.  Some Diffuse Interstellar Bands Related to Interstellar C2 Molecules , 2003 .

[42]  Abundances and Physical Conditions in the Warm Neutral Medium toward μ Columbae , 1999, astro-ph/9905187.

[43]  J. Christopher HowkKenneth R. Sembach Background and Scattered-Light Subtraction in the High-Resolution Echelle Modes of the Space Telescope Imaging Spectrograph , 1999 .