Computation of longwave electromagnetic response of nonhomogeneous media

A method for the numeric estimation of the effective permittivity of any nonhomogeneous medium that admits the effective medium approximation under the longwave approximation is presented. Media are modeled as inclusions embedded in a continuous matrix. We show how the potentials at the inclusion boundaries are sufficient information for the estimation of the effective permittivity. We also show efficient implementation techniques to estimate them computationally, either by Monte Carlo random walk or by relaxation. We provide numerical results for several regular two- and three-dimensional structures and show the dependence of the effective response on the shape of the inclusions and their spatial arrangement, and the influence of the percolation threshold.

[1]  J. Martín-Herrero,et al.  Alternative techniques for cluster labelling on percolation theory , 2000 .

[2]  D. D. Yue,et al.  Theory of Electric Polarization , 1974 .

[3]  Graeme W. Milton,et al.  Bounds on the complex permittivity of a two‐component composite material , 1981 .

[4]  David J. Bergman,et al.  The dielectric constant of a composite material—A problem in classical physics , 1978 .

[5]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[6]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[7]  H. Looyenga Dielectric constants of heterogeneous mixtures , 1965 .

[8]  George Papanicolaou,et al.  Some applications of the coherent potential approximation , 1981 .

[9]  Abdou Youssef,et al.  A Parallel Algorithm for Random Walk Construction with Application to the Monte Carlo Solution of Partial Differential Equations , 1993, IEEE Trans. Parallel Distributed Syst..

[10]  F. Bechstedt,et al.  Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab initio supercell calculations , 2003 .

[11]  B. U. Felderhof Bounds for the complex dielectric constant of a two-phase composite , 1984 .

[12]  M. Sadiku,et al.  Solution of Dirichlet problems by the Exodus method , 1992 .

[13]  Ari Henrik Sihvola,et al.  Analysis of a three-dimensional dielectric mixture with finite difference method , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  Comparison of dielectric properties determined from a computational approach and experiment for anisotropic and periodic heterostructures , 2001 .

[15]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[16]  Reinder A. Feddes,et al.  New dielectric mixture equation for porous materials based on depolarization factors , 2000 .

[17]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[18]  Stanislaw M. Gubanski,et al.  Dielectric mixtures: electrical properties and modeling , 2001 .

[19]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[20]  R. McPhedran,et al.  Effective dielectic constant of arrays of elliptical cylinders , 1997 .

[21]  C. G. Gardner,et al.  High dielectric constant microwave probes for sensing soil moisture , 1974 .

[22]  D. Polder,et al.  The effective permeability of mixtures of solids , 1946 .

[23]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[24]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[25]  Effects of particle shape on the effective permittivity of composite materials with measurements for lattices of cubes , 2002 .

[26]  A. Spanoudaki,et al.  Effective dielectric properties of composite materials: The dependence on the particle size distribution , 2001 .

[27]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[28]  Overrelaxation and Related Methods , 1959 .

[29]  Johan Helsing,et al.  Bounds to the conductivity of some two‐component composites , 1993 .

[30]  Salvatore Torquato,et al.  Electric-field fluctuations in random dielectric composites , 1997 .

[31]  Effective permittivity of composites with stratified particles , 2001 .

[32]  Ari Henrik Sihvola,et al.  Effective permittivity of mixtures: numerical validation by the FDTD method , 2000, IEEE Trans. Geosci. Remote. Sens..

[33]  Ashley F. Emery,et al.  A Modification to the Monte Carlo Method—The Exodus Method , 1968 .

[34]  Alan P. Byrnes,et al.  Modeling Dielectric-constant values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation , 2001 .

[35]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[36]  Permittivity of lossy heterostructures: effect of shape anisotropy , 2000 .

[37]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[38]  Mark A. Franklin,et al.  Monte Carlo Solution of Partial Differential Equations by Special Purpose Digital Computer , 1974, IEEE Transactions on Computers.

[39]  J. Martín-Herrero,et al.  Hybrid cluster identification , 2004 .

[40]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .

[41]  Leung Tsang,et al.  Application of Strong Fluctuation Random Medium Theory to Scattering from Vegetation-Like Half Space , 1981, IEEE Transactions on Geoscience and Remote Sensing.

[42]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[43]  Ari Sihvola,et al.  Mixing rules and percolation , 1994 .

[44]  A boundary integral equation method for the calculation of the effective permittivity of periodic composites , 1997 .

[45]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[46]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. I. , 1955 .

[47]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[48]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[49]  P. Marquardt Size-Governed Dielectric Properties of Matrix-Isolated and Percolating Mesoscopic Conductors , 1992 .

[50]  Sidney Frankel Multiconductor transmission line analysis , 1977 .

[51]  Raoul Kopelman,et al.  Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm , 1976 .

[52]  Stanislaw Gubanski,et al.  Dielectric relaxation in dielectric mixtures: Application of the finite element method and its comparison with dielectric mixture formulas , 2001 .

[53]  P. Ghosh,et al.  Numerical calculation of effective permittivity of lossless dielectric mixtures using boundary integral method , 1994 .

[54]  Jochen Monecke,et al.  Bergman spectral representation of a simple expression for the dielectric response of a symmetric two-component composite , 1994 .

[55]  J. Martín-Herrero,et al.  A mixing rule for permittivity from an approximation of a model in a framework of a mesoscopic scale , 2002 .

[56]  K.F. Schoch,et al.  HANDBOOK OF ELECTROMAGNETIC MATERIALS , 1996, IEEE Electrical Insulation Magazine.

[57]  William M. Merrill,et al.  Analytic framework for the modeling of effective media , 1998 .

[58]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[59]  Ari Henrik Sihvola,et al.  How strict are theoretical bounds for dielectric properties of mixtures? , 2001, IEEE Trans. Geosci. Remote. Sens..

[60]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[61]  C. Brosseau,et al.  How do shape anisotropy and spatial orientation of the constituents affect the permittivity of dielectric heterostructures , 2000 .

[62]  A. Stöhr,et al.  Gelöste und ungelöste Fragen über Basen der natürlichen Zahlenreihe. II. , 1955 .

[63]  L. Brillouin,et al.  Wave Propagation in Periodic Structures , 1946 .

[64]  A. Sihvola,et al.  Numerical testing of dielectric mixing rules by FDTD method , 1999 .