Initiation and Growth of Self-Organized TiO2 Nanotubes Anodically Formed in NH4F ∕ ( NH4 ) 2SO4 Electrolytes

The anodic formation of self-organized porous TiO 2 on titanium was investigated in 1 M (NH 4 ) 2 SO 4 electrolytes containing 0.5 wt % NH 4 F by potential sweeps to 20 V S C E . By a combination of electrochemical, morphological, and compositional information we show that the sweep rate has a significant influence on the initiation and growth of the porous structures. In the first phase of the anodization process, a precursor barrier type of oxide film is formed; underneath this film pores then start growing first randomly and then self-organize. High-aspect-ratio TiO 2 nanostructures can be obtained under optimized electrochemical conditions. These nanotubular oxide layers have single-pore diameter ranging from 90 to 110 nm, average spacing of 150 nm, and porosity in the order of 37-42%. The current work indicates that the nature of the initial barrier-type layer has a strong influence on establishing optimized pore growth conditions.

[1]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[2]  Eugeniu Balaur,et al.  Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes , 2005 .

[3]  Greg P. Smestad,et al.  Characterization of nanocrystalline and thin film TiO2 solar cells with poly(3-undecyl-2,2'-bithiophene) as a sensitizer and hole conductor , 2002 .

[4]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[5]  G. Thompson,et al.  Porous anodic alumina: fabrication, characterization and applications , 1997 .

[6]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[7]  P. Schmuki,et al.  Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes , 2005 .

[8]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[9]  Toshiaki Tamamura,et al.  Highly ordered nanochannel-array architecture in anodic alumina , 1997 .

[10]  Patrik Schmuki,et al.  Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization. , 2005, Small.

[11]  T. Albrektsson,et al.  Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. , 2002, Biomaterials.

[12]  R. Hill,et al.  Primary Processes in the Catalytic Photooxidation of p‐Cresol , 1997 .

[13]  H. Föll,et al.  Formation Mechanism and Properties of Electrochemically Etched Trenches in n‐Type Silicon , 1990 .

[14]  Patrik Schmuki,et al.  Formation of self-organized niobium porous oxide on niobium , 2005 .

[15]  Patrik Schmuki,et al.  Self-Organized Porous Titanium Oxide Prepared in H 2 SO 4 / HF Electrolytes , 2003 .

[16]  Jan M. Macak,et al.  Titanium oxide nanotubes prepared in phosphate electrolytes , 2005 .

[17]  Jan M. Macak,et al.  Self-organized porous WO3 formed in NaF electrolytes , 2005 .

[18]  P. Schmuki From Bacon to barriers: a review on the passivity of metals and alloys , 2002 .

[19]  T. Ohtsuka,et al.  The aging of the anodic oxide of titanium during potentiostatic condition by ellipsometry , 2003 .

[20]  Xingdong Zhang,et al.  Preparation of bioactive titanium metal via anodic oxidation treatment. , 2004, Biomaterials.

[21]  Craig A. Grimes,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation , 2001 .

[22]  S. Fujimoto,et al.  Morphological characterization of porous InP superlattices , 2004 .

[23]  Donal D. C. Bradley,et al.  A solid state solar cell using sol–gel processed material and a polymer , 2001 .

[24]  M. Lohrengel,et al.  Nucleation and growth of anodic oxide films , 1983 .

[25]  M. Grätzel Dye-sensitized solar cells , 2003 .

[26]  Y. Nakato,et al.  Photo-oxidation reaction of water on an n-TiO2 electrode. Improvement in efficiency through formation of surface micropores by photo-etching in H2SO4 , 1995 .

[27]  P. Schmuki,et al.  Electrochemical formation of porous superlattices on n-type (1 0 0) InP , 2003 .

[28]  J. C. Marchenoir,et al.  Étude des couches poreuses formées par oxydation anodique du titane sous fortes tensions , 1980 .

[29]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[30]  Tadashi Kokubo,et al.  Apatite formation on surfaces of ceramics, metals and polymers in body environment , 1998 .

[31]  Frank Müller,et al.  Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina , 1998 .

[32]  T. Ohtsuka,et al.  The influence of the growth rate on the semiconductive properties of titanium anodic oxide films , 1998 .

[33]  A. J. Frank,et al.  Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells , 2000 .

[34]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[35]  Jan M. Macak,et al.  Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes , 2005 .

[36]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[37]  Craig A. Grimes,et al.  Crystallization and high-temperature structural stability of titanium oxide nanotube arrays , 2003 .

[38]  Eiichi Kojima,et al.  Light-induced amphiphilic surfaces , 1997, Nature.

[39]  Patrik Schmuki,et al.  Thick self-organized porous zirconium oxide formed in H2SO4/NH4F electrolytes , 2004 .

[40]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[41]  Marc Aucouturier,et al.  Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach , 1999 .

[42]  Craig A. Grimes,et al.  Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure , 2003 .

[43]  Patrik Schmuki,et al.  Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization , 2005 .

[44]  Zhen Ma,et al.  Nanosized anatase TiO2 as precursor for preparation of sulfated titania catalysts , 2002 .

[45]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.