The Explicit Coding Rate Region of Symmetric Multilevel Diversity Coding

It is well known that <italic>superposition coding</italic>, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999) for any <inline-formula> <tex-math notation="LaTeX">$L\geq 2$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> is the number of levels of the coding system. However, the characterization of the coding rate region therein involves uncountably many linear inequalities and the constant term (i.e., the lower bound) in each inequality is given in terms of the solution of a linear optimization problem. Thus this implicit characterization of the coding rate region does not enable the determination of the achievability of a given rate tuple. In principle, the achievability of a given rate tuple can be determined by direct computation, but the complexity is prohibitive even for <inline-formula> <tex-math notation="LaTeX">$L=5$ </tex-math></inline-formula>. In this paper, for any fixed <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>, we obtain in closed form a finite set of linear inequalities for characterizing the coding rate region. We further show by the symmetry of the problem that only a much smaller subset of this finite set of inequalities needs to be verified in determining the achievability of a given rate tuple. Yet, the cardinality of this smaller set grows at least exponentially fast with <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula>. We also present a subset entropy inequality, which together with our explicit characterization of the coding rate region, is sufficient for proving the optimality of superposition coding.

[1]  Raymond W. Yeung,et al.  Multilevel diversity coding with distortion , 1995, IEEE Trans. Inf. Theory.

[2]  Madhu Sudan,et al.  Priority encoding transmission , 1996, IEEE Trans. Inf. Theory.

[3]  Catherine A. Meadows,et al.  Security of Ramp Schemes , 1985, CRYPTO.

[4]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[5]  Tao Guo,et al.  The Explicit Coding Rate Region of Symmetric Multilevel Diversity Coding , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[6]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[7]  Vivek K. Goyal,et al.  Multiple description coding with many channels , 2003, IEEE Trans. Inf. Theory.

[8]  Abbas El Gamal,et al.  Achievable rates for multiple descriptions , 1982, IEEE Trans. Inf. Theory.

[10]  D. J. H. Garling,et al.  The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by J. Michael Steele , 2005, Am. Math. Mon..

[11]  Soung Chang Liew,et al.  Parallel Communications for ATM Network Control and Management , 1997, Perform. Evaluation.

[12]  Lihua Song,et al.  Zero-error network coding for acyclic network , 2003, IEEE Trans. Inf. Theory.

[13]  James Richard Roche Distributed information storage , 1992 .

[14]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[15]  Te Sun Han Nonnegative Entropy Measures of Multivariate Symmetric Correlations , 1978, Inf. Control..

[16]  Richard D. Gitlin,et al.  Diversity coding for transparent self-healing and fault-tolerant communication networks , 1993, IEEE Trans. Commun..

[17]  Toby Berger,et al.  New results in binary multiple descriptions , 1987, IEEE Trans. Inf. Theory.

[18]  Zhen Zhang,et al.  Distributed Source Coding for Satellite Communications , 1999, IEEE Trans. Inf. Theory.

[19]  Tie Liu,et al.  Secure Symmetrical Multilevel Diversity Coding , 2012, IEEE Transactions on Information Theory.

[20]  Chao Tian,et al.  Approximating the Gaussian multiple description rate region under symmetric distortion constraints , 2008, ISIT.

[21]  Raymond W. Yeung,et al.  Symmetrical multilevel diversity coding , 1997, IEEE Trans. Inf. Theory.

[22]  Tao Guo,et al.  Extended Multiple Descriptions with Reconstruction Consistency Constraints , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[23]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[24]  Jun Chen,et al.  Distributed Multilevel Diversity Coding , 2015, IEEE Transactions on Information Theory.

[25]  O. Mangasarian PSEUDO-CONVEX FUNCTIONS , 1965 .

[26]  Tie Liu,et al.  Symmetrical Multilevel Diversity Coding and Subset Entropy Inequalities , 2014, IEEE Transactions on Information Theory.

[27]  Chao Tian,et al.  Multilevel Diversity Coding With Regeneration , 2016, IEEE Trans. Inf. Theory.

[28]  John MacLaren Walsh,et al.  Multilevel Diversity Coding Systems: Rate Regions, Codes, Computation, & Forbidden Minors , 2014, IEEE Transactions on Information Theory.

[29]  Suhas N. Diggavi,et al.  Asymmetric Multilevel Diversity Coding and Asymmetric Gaussian Multiple Descriptions , 2010, IEEE Transactions on Information Theory.