Distributed distance computation and routing with small messages

We consider shortest paths computation and related tasks from the viewpoint of network algorithms, where the n-node input graph is also the computational system: nodes represent processors and edges represent communication links, which can in each time step carry an $$\mathcal {O}(\log n)$$O(logn)-bit message. We identify several basic distributed distance computation tasks that are highly useful in the design of more sophisticated algorithms and provide efficient solutions. We showcase the utility of these tools by means of several applications.

[1]  Baruch Awerbuch,et al.  Improved Routing Strategies with Succinct Tables , 1990, J. Algorithms.

[2]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[3]  Eli Upfal,et al.  A trade-off between space and efficiency for routing tables , 1989, JACM.

[4]  Sandeep Sen,et al.  Approximate distance oracles for unweighted graphs in expected O(n2) time , 2006, TALG.

[5]  Baruch Awerbuch,et al.  Compact distributed data structures for adaptive routing , 1989, STOC '89.

[6]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[7]  Telikepalli Kavitha,et al.  Faster Algorithms for Approximate Distance Oracles and All-Pairs Small Stretch Paths , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[8]  Michael Dinitz,et al.  Efficient computation of distance sketches in distributed networks , 2011, SPAA '12.

[9]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.

[10]  Roger Wattenhofer,et al.  Time Lower Bounds for Distributed Distance Oracles , 2014, OPODIS.

[11]  David Peleg,et al.  Distributed Algorithms for Network Diameter and Girth , 2012, ICALP.

[12]  Stephan Holzer,et al.  Approximation of Distances and Shortest Paths in the Broadcast Congest Clique , 2014, OPODIS.

[13]  Eric C. Rosen,et al.  The New Routing Algorithm for the ARPANET , 1980, IEEE Trans. Commun..

[14]  Daniele Frigioni,et al.  Partially Dynamic Algorithms for Distributed Shortest Paths and their Experimental Evaluation , 2007, J. Comput..

[15]  Bilel Derbel,et al.  On the locality of distributed sparse spanner construction , 2008, PODC '08.

[16]  Bruce S. Davie,et al.  Computer Networks: A Systems Approach , 1996 .

[17]  Adrian Segall,et al.  Distributed network protocols , 1983, IEEE Trans. Inf. Theory.

[18]  John K. Antonio,et al.  A Fast Distributed Shortest Path Algorithm for a Class of Hierarchically Clustered Data Networks , 1992, IEEE Trans. Computers.

[19]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[20]  Roger Wattenhofer,et al.  Networks cannot compute their diameter in sublinear time , 2012, SODA.

[21]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[22]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[23]  Saroja Kanchi,et al.  AN OPTIMAL DISTRIBUTED ALGORITHM FOR ALL-PAIRS SHORTEST-PATH , 2007 .

[24]  T. Lindvall ON A ROUTING PROBLEM , 2004, Probability in the Engineering and Informational Sciences.

[25]  S. Haldar An 'All Pairs Shortest Paths' Distributed Algorithm Using 2n² Messages , 1997, J. Algorithms.

[26]  David Peleg,et al.  Proximity-Preserving Labeling Schemes and Their Applications , 1999, WG.

[27]  John Moy,et al.  OSPF Version 2 , 1998, RFC.

[28]  Hai Jin,et al.  Brief Announcement: A Tight Distributed Algorithm for All Pairs Shortest Paths and Applications , 2016, SPAA.

[29]  Lenore Cowen,et al.  Near-linear cost sequential and distributed constructions of sparse neighborhood covers , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[30]  Telikepalli Kavitha,et al.  Faster Algorithms for All-Pairs Small Stretch Distances in Weighted Graphs , 2007, Algorithmica.

[31]  Keren Censor-Hillel,et al.  Near-Linear Lower Bounds for Distributed Distance Computations, Even in Sparse Networks , 2016, DISC.

[32]  Boaz Patt-Shamir,et al.  Fast routing table construction using small messages: extended abstract , 2012, STOC '13.

[33]  Nicola Santoro,et al.  Labelling and Implicit Routing in Networks , 1985, Computer/law journal.

[34]  Prabhakar Raghavan,et al.  Provably good routing in graphs: regular arrays , 1985, STOC '85.

[35]  Christoph Lenzen,et al.  Near-Optimal Approximate Shortest Paths and Transshipment in Distributed and Streaming Models , 2016, DISC.

[36]  David Peleg,et al.  Distributed Computing: A Locality-Sensitive Approach , 1987 .

[37]  Danupon Nanongkai,et al.  Distributed approximation algorithms for weighted shortest paths , 2014, STOC.

[38]  David Peleg,et al.  Compact and localized distributed data structures , 2003, Distributed Computing.

[39]  Christoph Lenzen,et al.  Efficient distributed source detection with limited bandwidth , 2013, PODC '13.

[40]  Aaron Bernstein Maintaining shortest paths under deletions in weighted directed graphs: [extended abstract] , 2013, STOC '13.

[41]  L. R. Ford,et al.  NETWORK FLOW THEORY , 1956 .

[42]  Shiri Chechik,et al.  Compact Routing Schemes , 2016, Encyclopedia of Algorithms.

[43]  Christoph Lenzen,et al.  Near-Optimal Distributed Tree Embedding , 2014, DISC.

[44]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[45]  Boaz Patt-Shamir,et al.  Improved distributed steiner forest construction , 2014, PODC '14.

[46]  Aleksander Madry,et al.  Faster approximation schemes for fractional multicommodity flow problems via dynamic graph algorithms , 2010, STOC '10.

[47]  Baruch Awerbuch,et al.  Routing with Polynomial Communication-Space Trade-Off , 1992, SIAM J. Discret. Math..

[48]  Boaz Patt-Shamir,et al.  Fast Partial Distance Estimation and Applications , 2014, PODC.

[49]  David Peleg,et al.  An optimal synchronizer for the hypercube , 1987, PODC '87.

[50]  Roger Wattenhofer,et al.  Optimal distributed all pairs shortest paths and applications , 2012, PODC '12.