POD a-posteriori error estimates for linear-quadratic optimal control problems
暂无分享,去创建一个
[1] J. A. Atwell,et al. Reduced order controllers for Burgers' equation with a nonlinear observer , 2001 .
[2] Tosio Kato. Perturbation theory for linear operators , 1966 .
[3] Clarence W. Rowley,et al. Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.
[4] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[5] H. Tran,et al. Modeling and control of physical processes using proper orthogonal decomposition , 2001 .
[6] Jacques-Louis Lions,et al. Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .
[7] S. S. Ravindran,et al. Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition , 2001, SIAM J. Sci. Comput..
[8] S. Volkwein,et al. MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .
[9] J. Lions. Optimal Control of Systems Governed by Partial Differential Equations , 1971 .
[10] Enrique S. Quintana-Ortí,et al. Model Reduction Based on Spectral Projection Methods , 2005 .
[11] Hans-Herwig Priebsch,et al. Impedance Identification out of Pressure Data’s with a hybrid Measurement-Simulation Methodology up to 1kHz , 2006 .
[12] E. Sachs,et al. Trust-region proper orthogonal decomposition for flow control , 2000 .
[13] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .
[14] Stefan Volkwein,et al. Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..
[15] L. Sirovich. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .
[16] Jean-Pierre Raymond,et al. ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .
[17] S. Mitter,et al. Representation and Control of Infinite Dimensional Systems , 1992 .
[18] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[19] R. Triggiani,et al. Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .
[20] J. Marsden,et al. A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .
[21] Stefan Volkwein,et al. Proper orthogonal decomposition for optimality systems , 2008 .
[22] S. Volkwein,et al. Nonlinear Boundary Control for the Heat Equation Utilizing Proper Orthogonal Decomposition , 2001 .
[23] Kazufumi Ito,et al. The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..
[24] J. Peraire,et al. Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .
[25] Fredi Tröltzsch,et al. Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..
[26] Stefan Volkwein,et al. Impedance Identification by POD Model Reduction Techniques (Impedanz-Identifikation mittels POD Modellreduktion) , 2008, Autom..
[27] Stefan Volkwein,et al. Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.
[28] E. Casas,et al. Error estimates for the finite-element approximation of a semilinear elliptic control problem , 2002 .
[29] I. Lasiecka,et al. Galerkin approximations of abstract parabolic boundary value problems with rough boundary data— L p theory , 1986 .
[30] Stephen J. Wright,et al. Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .
[31] Stefan Volkwein,et al. Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..
[32] Jean-Pierre Yvon,et al. Convergence Estimates of POD-Galerkin Methods for Parabolic Problems , 2003, System Modelling and Optimization.
[33] Irena Lasiecka. Convergence Estimates for Semidiscrete Approximations of Nonselfadjoint Parabolic Equations , 1984 .