POD a-posteriori error estimates for linear-quadratic optimal control problems

The main focus of this paper is on an a-posteriori analysis for the method of proper orthogonal decomposition (POD) applied to optimal control problems governed by parabolic and elliptic PDEs. Based on a perturbation method it is deduced how far the suboptimal control, computed on the basis of the POD model, is from the (unknown) exact one. Numerical examples illustrate the realization of the proposed approach for linear-quadratic problems governed by parabolic and elliptic partial differential equations.

[1]  J. A. Atwell,et al.  Reduced order controllers for Burgers' equation with a nonlinear observer , 2001 .

[2]  Tosio Kato Perturbation theory for linear operators , 1966 .

[3]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[4]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[5]  H. Tran,et al.  Modeling and control of physical processes using proper orthogonal decomposition , 2001 .

[6]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[7]  S. S. Ravindran,et al.  Adaptive Reduced-Order Controllers for a Thermal Flow System Using Proper Orthogonal Decomposition , 2001, SIAM J. Sci. Comput..

[8]  S. Volkwein,et al.  MODEL REDUCTION USING PROPER ORTHOGONAL DECOMPOSITION , 2008 .

[9]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[10]  Enrique S. Quintana-Ortí,et al.  Model Reduction Based on Spectral Projection Methods , 2005 .

[11]  Hans-Herwig Priebsch,et al.  Impedance Identification out of Pressure Data’s with a hybrid Measurement-Simulation Methodology up to 1kHz , 2006 .

[12]  E. Sachs,et al.  Trust-region proper orthogonal decomposition for flow control , 2000 .

[13]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[14]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[15]  L. Sirovich Turbulence and the dynamics of coherent structures. III. Dynamics and scaling , 1987 .

[16]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[17]  S. Mitter,et al.  Representation and Control of Infinite Dimensional Systems , 1992 .

[18]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[19]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[20]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[21]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[22]  S. Volkwein,et al.  Nonlinear Boundary Control for the Heat Equation Utilizing Proper Orthogonal Decomposition , 2001 .

[23]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[24]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[25]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[26]  Stefan Volkwein,et al.  Impedance Identification by POD Model Reduction Techniques (Impedanz-Identifikation mittels POD Modellreduktion) , 2008, Autom..

[27]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[28]  E. Casas,et al.  Error estimates for the finite-element approximation of a semilinear elliptic control problem , 2002 .

[29]  I. Lasiecka,et al.  Galerkin approximations of abstract parabolic boundary value problems with rough boundary data— L p theory , 1986 .

[30]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[31]  Stefan Volkwein,et al.  Error estimates for abstract linear–quadratic optimal control problems using proper orthogonal decomposition , 2008, Comput. Optim. Appl..

[32]  Jean-Pierre Yvon,et al.  Convergence Estimates of POD-Galerkin Methods for Parabolic Problems , 2003, System Modelling and Optimization.

[33]  Irena Lasiecka Convergence Estimates for Semidiscrete Approximations of Nonselfadjoint Parabolic Equations , 1984 .