Event-driven acquisition for content-enriched microscopy

[1]  S. Manley,et al.  Event-driven acquisition for content-enriched microscopy. , 2023, Biophysical journal.

[2]  J. Grimm,et al.  Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels , 2021, Nature Methods.

[3]  Dilip K. Prasad,et al.  Physics-based machine learning for subcellular segmentation in living cells , 2021, Nature Machine Intelligence.

[4]  K. Kessenbrock,et al.  Automated segmentation and tracking of mitochondria in live-cell time-lapse images , 2021, Nature Methods.

[5]  S. Manley,et al.  Distinct fission signatures predict mitochondrial degradation or biogenesis , 2021, Nature.

[6]  S. Manley,et al.  Mitochondrial membrane tension governs fission. , 2021, Cell reports.

[7]  L. Waller,et al.  Learned adaptive multiphoton illumination microscopy for large-scale immune response imaging , 2020, Nature Communications.

[8]  Michael Eisenstein,et al.  Smart solutions for automated imaging , 2020, Nature Methods.

[9]  Carsten Marr,et al.  MitoSegNet: Easy-to-use Deep Learning Segmentation for Analyzing Mitochondrial Morphology , 2020, iScience.

[10]  Jia Liu,et al.  Three-dimensional residual channel attention networks denoise and sharpen fluorescence microscopy image volumes , 2020, Nature Methods.

[11]  C. Eggeling,et al.  Object detection networks and augmented reality for cellular detection in fluorescence microscopy , 2020, The Journal of cell biology.

[12]  Max A. Horlbeck,et al.  High-content imaging-based pooled CRISPR screens in mammalian cells , 2020, bioRxiv.

[13]  Claire M. Brown,et al.  Tutorial: guidance for quantitative confocal microscopy , 2020, Nature Protocols.

[14]  Suliana Manley,et al.  Homogeneous multifocal excitation for high-throughput super-resolution imaging , 2020, bioRxiv.

[15]  Fenqiang Zhao,et al.  Deep learning enables structured illumination microscopy with low light levels and enhanced speed , 2019, Nature Communications.

[16]  K. Charan,et al.  An adaptive excitation source for high speed multiphoton microscopy , 2019, Nature Methods.

[17]  Marco Castello,et al.  Smart scanning for low-illumination and fast RESOLFT nanoscopy in vivo , 2019, Nature Communications.

[18]  Audrey Durand,et al.  A machine learning approach for online automated optimization of super-resolution optical microscopy , 2018, Nature Communications.

[19]  M. Ryan,et al.  Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission , 2018, Nature Communications.

[20]  Marcel Štefko,et al.  Autonomous illumination control for localization microscopy. , 2018, Optics express.

[21]  Eric Czech,et al.  Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging , 2018, BMC Bioinformatics.

[22]  J. Rothman,et al.  Assessing photodamage in live-cell STED microscopy , 2018, Nature Methods.

[23]  Guillaume Charras,et al.  Automating multimodal microscopy with NanoJ-Fluidics , 2018, bioRxiv.

[24]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[25]  S. Manley,et al.  Constriction Rate Modulation Can Drive Cell Size Control and Homeostasis in C. crescentus , 2018, bioRxiv.

[26]  Loic A. Royer,et al.  Content-aware image restoration: pushing the limits of fluorescence microscopy , 2018, bioRxiv.

[27]  Stefan W. Hell,et al.  Adaptive-illumination STED nanoscopy , 2017, Proceedings of the National Academy of Sciences.

[28]  Pavel Tomancak,et al.  Assessing phototoxicity in live fluorescence imaging , 2017, Nature Methods.

[29]  Andrew J. F. Valente,et al.  A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. , 2017, Acta histochemica.

[30]  Michael Z. Lin,et al.  The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins. , 2017, Trends in biochemical sciences.

[31]  J. Elf,et al.  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2016, Science.

[32]  Eugene W. Myers,et al.  Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms , 2016, Nature Biotechnology.

[33]  S. Stallinga,et al.  Adaptive illumination reduces photobleaching in structured illumination microscopy. , 2016, Biomedical optics express.

[34]  Henry Pinkard,et al.  Micro-Magellan: open-source, sample-adaptive, acquisition software for optical microscopy , 2016, Nature Methods.

[35]  J. Huisken,et al.  The smart and gentle microscope , 2015, Nature Biotechnology.

[36]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[37]  Timothy K Lee,et al.  Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus , 2015, Science.

[38]  L. Shapiro,et al.  Synchronization of Caulobacter crescentus for investigation of the bacterial cell cycle. , 2015, Journal of visualized experiments : JoVE.

[39]  Bethany J Wolf,et al.  Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. , 2015, Biochimica et biophysica acta.

[40]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[41]  W. Nickel,et al.  Dynamin-related Protein 1 (Drp1) Promotes Structural Intermediates of Membrane Division* , 2014, The Journal of Biological Chemistry.

[42]  Andrew G. York,et al.  Instant super-resolution imaging in live cells and embryos via analog image processing , 2013, Nature Methods.

[43]  J. Sibarita,et al.  Real-Time Analysis and Visualization for Single-Molecule Based Super-Resolution Microscopy , 2013, PloS one.

[44]  Andre S. Ribeiro,et al.  Mytoe: automatic analysis of mitochondrial dynamics , 2012, Bioinform..

[45]  M. Davidson,et al.  Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination , 2012, Proceedings of the National Academy of Sciences.

[46]  Yi-Hung Huang,et al.  Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics , 2011, PLoS Comput. Biol..

[47]  E. Manders,et al.  Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy , 2008, Journal of microscopy.

[48]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[49]  Jerome Mertz,et al.  Enhanced weak-signal sensitivity in two-photon microscopy by adaptive illumination. , 2007, Optics letters.

[50]  E. Manders,et al.  Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging , 2007, Nature Biotechnology.

[51]  W. E. Moerner,et al.  Method for trapping and manipulating nanoscale objects in solution , 2005 .

[52]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[53]  T. Sicheritz-Pontén,et al.  The genome sequence of Rickettsia prowazekii and the origin of mitochondria , 1998, Nature.

[54]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[55]  B. Ely Genetics of Caulobacter crescentus. , 1991, Methods in enzymology.