High Performance Computer Codes and their Application to Optimize Crystal Growth Processes

The paper deals with the continuation of the development of high performance computer codes and their application to modelling of crystal growth processes started by the authors’ research groups and reported in [1]. The mathematical model is based on the continuity equation and the conservation equations for momentum and heat transfer combined with mass transfer including chemical reactions. The thermal radiation analysis assumes a non-participating medium and semi-transparent walls. The radiation heat transfer is coupled with convection and conduction. The heat conduction includes thermal solid/fluid interactions between the gas and solid parts of the computational domain. The results of thermal calculations are used for the analysis of thermal stresses. The models are implemented in finite volume (both, block-structured and unstructured on non-orthogonal grids), and spectral and coupled finite volume/spectral numerical solution procedures.

[1]  Suresh V. Garimella,et al.  Directional Solidification of Pure Succinonitrile and a Succinonitrile-Acetone Alloy , 2000 .

[2]  H. Peek,et al.  A Stagnant Layer Model for the Epitaxial Growth of Silicon from Silane in a Horizontal Reactor , 1970 .

[3]  Robert J. Kee,et al.  A Mathematical Model of Silicon Chemical Vapor Deposition Further Refinements and the Effects of Thermal Diffusion , 1986 .

[4]  Frank P. Incropera,et al.  A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems. II: Application to solidification in a rectangular cavity , 1987 .

[5]  Philip M. Gresho,et al.  On the theory of semi‐implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 1: Theory , 1990 .

[6]  D. Spalding,et al.  A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows , 1972 .

[7]  Frank Brunner,et al.  MOVPE growth of GaInP GaAs hetero-bipolar-transistors using CBr 4 as carbon dopant source , 1997 .

[8]  Michael Heuken,et al.  Modeling of InGaN MOVPE in AIX 200 Reactor and AIX 2000 HT Planetary Reactor , 1999 .

[9]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[10]  Michael Schäfer,et al.  Coupling of a Finite-Volume Method with a Pseudospectral Method , 1998 .

[11]  M. Kurz,et al.  Presentation of a gentle discretisation scheme for the numerical treatment of nonlinear heat conduction on unstructured grids in finite volume technique , 1998 .

[12]  Klavs F. Jensen,et al.  Complex flow phenomena in MOCVD reactors: I. Horizontal reactors , 1986 .

[13]  Z. Zhang,et al.  Crystal growth. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Harvey P. Greenspan,et al.  The Theory of Rotating Fluids. By H. P. GREENSPAN. Cambridge University Press, 1968. 327 pp. £5.50. , 1972, Journal of Fluid Mechanics.

[15]  Anthony Randriamampianina,et al.  An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations , 1998 .

[16]  Patrick Bontoux,et al.  A pseudo-spectral solution of vorticity-stream function equations using the influence matrix technique , 1986 .

[17]  John C. Lambropoulos,et al.  The isotropic assumption during the Czochralski growth of single semiconductors crystals , 1987 .

[18]  Klavs F. Jensen,et al.  Three‐Dimensional Flow Effects in Silicon CVD in Horizontal Reactors , 1988 .

[19]  J. N. Sørensen,et al.  Simulation numérique de l'écoulement périodique axisymétrique dans une cavité cylindrique , 1989 .

[20]  R. Peyret,et al.  Stability of collocation-Chebyshev schemes with application to the Navier-Stokes equations , 1986 .

[21]  M. G. Jacko,et al.  THE PYROLYSIS OF TRIMETHYL GALLIUM , 1963 .

[22]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[23]  Franz Rosenberger,et al.  Three-dimensional modelling of horizontal chemical vapor deposition: I. MOCVD at atmospheric pressure , 1990 .

[24]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[25]  H. Swinney,et al.  Dynamical instabilities and the transition to chaotic Taylor vortex flow , 1979, Journal of Fluid Mechanics.

[26]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[27]  Michel Deville,et al.  Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helmholtz equation , 1984 .

[28]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[29]  Franz Rosenberger,et al.  On the 2D modelling of horizontal CVD reactors and its limitations , 1988 .

[30]  Dale B. Haidvogel,et al.  The Accurate Solution of Poisson's Equation by Expansion in Chebyshev Polynomials , 1979 .

[31]  Jens Nørkær Sørensen,et al.  Direct numerical simulation of rotating fluid flow in a closed cylinder , 1995 .

[32]  Harry L. Swinney,et al.  Flow regimes in a circular Couette system with independently rotating cylinders , 1986, Journal of Fluid Mechanics.

[33]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[34]  Franz Durst,et al.  A multigrid solver for fluid flow and mass transfer coupled with grey-body surface radiation for the numerical simulation of chemical vapor deposition processes , 1995 .

[35]  Franz Durst,et al.  a Parallel Block-Structured Multigrid Method for the Prediction of Incompressible Flows , 1996 .

[36]  Mohammed El Ganaoui,et al.  Localisation d'un front de solidification en interaction avec un bain fondu instationnaire , 1999 .

[37]  Craig L. Streett,et al.  A numerical simulation of the appearance of chaos in finite-length Taylor Couette flow , 1991 .

[38]  Patrick Bontoux,et al.  Spectral simulations of oscillatory convection at low Prandtl number , 1990 .

[39]  Dominique Morvan,et al.  Numerical simulation of a 2-D crystal growth problem in vertical Bridgman–Stockbarger furnace: latent heat effect and crystal–melt interface morphology , 1999 .

[40]  Mark D. Allendorf,et al.  Equilibrium Predictions of the Role of Organosilicon Compounds in the Chemical Vapor Deposition of Silicon Carbide , 1993 .

[41]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[42]  M. G. Jacko,et al.  THE PYROLYSIS OF TRIMETHYLINDIUM , 1964 .

[43]  M. Modest Radiative heat transfer , 1993 .

[44]  Roland Rupp,et al.  Silicon Carbide Cvd Approaches Industrial Needs , 1996 .

[45]  Brian J. Cantwell,et al.  Oscillatory flow states in an enclosed cylinder with a rotating endwall , 1999 .

[46]  Mohammed El Ganaoui Modélisation numérique de la convection thermique instationnaire en présence d'un front de solidification déformable : Applications à la croissance cristalline , 1997 .

[47]  M. Suzuki,et al.  Uniform and abrupt InGaP/GaAs selectively doped heterostructures grown by MOVPE for HEMT ICs , 1988 .

[48]  I. Raspo,et al.  A spectral multidomain technique for the computation of the czochralski melt configuration , 1996 .

[49]  Jalil Ouazzani,et al.  Symmetry breaking flow transitions and oscillatory flows in a 2D directional solidification model , 1994 .

[50]  M. Hortmann,et al.  Finite volume multigrid prediction of laminar natural convection: Bench-mark solutions , 1990 .

[51]  F. Incropera,et al.  A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems—I. Model formulation , 1987 .

[52]  Robert J. Kee,et al.  A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor , 1984 .

[53]  Christoph Beckermann,et al.  Effect of Solid Subcooling on Natural Convection Melting of a Pure Metal , 1989 .

[54]  Guan Heng Yeoh,et al.  A numerical and experimental study of natural convection and interface shape in crystal growth , 1997 .

[55]  Georg Müller Melt Growth of Semiconductors , 1998 .

[56]  Robert J. Kee,et al.  A Model of Silicon Carbide Chemical Vapor Deposition , 1991 .

[57]  Mario A. Storti,et al.  Numerical methods in phase-change problems , 1994 .

[58]  Roland Rupp,et al.  First results on silicon carbide vapour phase epitaxy growth in a new type of vertical low pressure chemical vapour deposition reactor , 1995 .

[59]  M. P. Escudier,et al.  Observations of the flow produced in a cylindrical container by a rotating endwall , 1984 .

[60]  Bernard Billia,et al.  Interaction of thermal convection with the solid-liquid interface during downward solidification of Pb-30wt%Tl alloys , 1987 .

[61]  Jae Min Hyun,et al.  Time-Dependent Vortex Breakdown in a Cylinder With a Rotating Lid , 1997 .

[62]  V. Voller,et al.  A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems , 1987 .

[63]  G. B. Stringfellow Organometallic Vapor-Phase Epitaxy: Theory and Practice , 1989 .

[64]  K. H. Winters Oscillatory convection in liquid metals in a horizontal temperature gradient , 1988 .

[65]  Andreas Spohn,et al.  Experiments on vortex breakdown in a confined flow generated by a rotating disc , 1998, Journal of Fluid Mechanics.

[66]  Chung-Wen Lan,et al.  Bifurcation and stability analyses of horizontal Bridgman crystal growth of a low Prandtl number material , 1998 .

[67]  Pierre Haldenwang,et al.  Pattern study in the 2-D solutal convection above a Bridgman-type solidification front , 1997 .

[68]  Omer Savas,et al.  Stability of Bödewadt flow , 1987, Journal of Fluid Mechanics.

[69]  Roland Rupp,et al.  Modeling analysis of gas phase nucleation in silicon carbide chemical vapor deposition , 1999 .

[70]  Brian J. Edwards,et al.  Efficient Pseudospectral Flow Simulations in Moderately Complex Geometries , 1998 .

[71]  Malika Naamoune Modélisation et optimisation numérique de réacteurs CVD , 1997 .

[72]  Peter Spellucci,et al.  Numerische Verfahren der nichtlinearen Optimierung , 1993 .

[73]  Stefan Turek,et al.  Efficient Solvers for Incompressible Flow Problems - An Algorithmic and Computational Approach , 1999, Lecture Notes in Computational Science and Engineering.

[74]  Joao M.M. Sousa,et al.  Confined vortex breakdown generated by a rotating cone , 1999, Journal of Fluid Mechanics.

[75]  Mohammed El Ganaoui,et al.  Simulation nume´rique par une approche porosite´-enthalpie de la convection thermo-solutale dans une ampoule de croissance cristalline , 1999 .

[76]  A. Davey,et al.  On the removal of the singularities from the Riccati method , 1979 .