Bayesian multiple comparisons using dirichlet process priors

Abstract We consider the problem of multiple comparisons from a Bayesian viewpoint. The family of Dirichlet process priors is applied in the form of baseline prior/likelihood combinations to obtain posterior probabilities for various hypotheses of equality among population means. The baseline prior/likelihood combinations considered here are beta/binomial and normal/inverted gamma with equal variances on treatment means. The prior probabilities of the hypotheses depend directly on the concentration parameter of the Dirichlet process prior. Finding posterior distributions is analytically intractable; we use Gibbs sampling. The posterior probabilities of hypotheses of interest are easily obtained as a by-product in evaluating the marginal posterior distributions of the parameters. The proposed procedure is compared to Duncan's multiple range test and shown to be more powerful under certain alternative hypotheses.

[1]  H. Jeffreys,et al.  Theory of probability , 1896 .

[2]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[3]  Rupert G. Miller Simultaneous Statistical Inference , 1966 .

[4]  R. A. Waller,et al.  A Bayes Rule for the Symmetric Multiple Comparisons Problem , 1969 .

[5]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[6]  C. Antoniak Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .

[7]  D. Berry,et al.  Empirical Bayes Estimation of a Binomial Parameter Via Mixtures of Dirichlet Processes , 1979 .

[8]  James H. Torrie,et al.  Principles and procedures of statistics: a biometrical approach (2nd ed) , 1980 .

[9]  I. Good Good Thinking: The Foundations of Probability and Its Applications , 1983 .

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[12]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[13]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[14]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[15]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[16]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[17]  S. MacEachern Estimating normal means with a conjugate style dirichlet process prior , 1994 .

[18]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[19]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .