Effective Formal Reduction of Linear Differential Systems

Abstract. In this paper we present a new method for the formal reduction of linear differential systems. We generalize classical results and concepts and obtain new characterizations of existing notions. Our main result is a generalization of the classical Splitting Lemma. This leads to an algorithm for computing formal invariants and solutions in a more efficient way.

[1]  Evelyne Tournier Solutions formelles d'équations différentielles‎ : le logiciel de calcul formel DESIR‎ : étude théorique et réalisation. (Differential equations formal solutions : scheme and realization of a software for a formal calculation system) , 1987 .

[2]  My Abdelfattah Barkatou Contribution à l'étude des équations différentielles et aux différences dans le champ complexe. (Contributions to the study of linear differential equations and difference equations in the complex domain) , 1989 .

[3]  Moulay A. Barkatou,et al.  An Algorithm Computing the Regular Formal Solutions of a System of Linear Differential Equations , 1999, J. Symb. Comput..

[4]  Eckhard Pflügel,et al.  An algorithm for computing exponential solutions of first order linear differential systems , 1997, ISSAC.

[5]  M. V. Hoeij,et al.  Factorization of linear differential operators , 1996 .

[6]  Donald G. Babbitt,et al.  Formal reduction theory of meromorphic differential equations: a group theoretic view. , 1983 .

[7]  Volker Dietrich Zur Reduktion von linearen Differentialgleichungssystemen , 1978 .

[8]  Moulay A. Barkatou,et al.  On Rational Solutions of Systems of Linear Differential Equations , 1999, J. Symb. Comput..

[9]  Abdelaziz Hilali Solutions formelles de systèmes différentiels linéaires au voisinage d'un point singulier. (Formal solutions of linear differential systems at a singular point) , 1987 .

[10]  J. Moser,et al.  The order of a singularity in Fuchs' theory , 1959 .

[11]  Guoting Chen,et al.  An algorithm for computing the formal solutions of differential systems in the neighborhood of an irregular singular point , 1990, ISSAC '90.

[12]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[13]  D. A. Lutz,et al.  On the identification and stability of formal invariants for singular differential equations , 1985 .

[14]  Aziz Hilali,et al.  On the Algebraic and Differential Newton-Puiseux Polygons , 1987, J. Symb. Comput..

[15]  H. L. Turrittin Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point , 1955 .

[17]  A. Hilali Calcul des invariants de Malgrange et de Gérard-Levelt d'un système différentiel linéaire en un point singulier irrégulier , 1987 .

[18]  A. Hilali,et al.  Un algorithme de calcul de l'invariant de Katz d'un système différentiel linéaire , 1986 .

[19]  Mark van Hoeij,et al.  Formal Solutions and Factorization of Differential Operators with Power Series Coefficients , 1997, J. Symb. Comput..

[20]  K. Chu The solution of the matrix equations AXB−CXD=E AND (YA−DZ,YC−BZ)=(E,F) , 1987 .