ELEVATE: A Framework for Entity-level Event Diffusion Prediction into Foreign Language Communities

The accessibility to news via the Web or other "traditional" media allows a rapid diffusion of information into almost every part of the world. These reports cover the full spectrum of events, ranging from locally relevant ones up to those that gain global attention. The societal impact of an event can be relatively easily "measured" by the attention it attracts (e.g. in the number of responses it receives and/or provokes) in the news or social media. However, this does not necessarily reflect its inter-cultural impact and its diffusion into other communities. In order to address the issue of predicting the spread of information into foreign language communities we introduce the ELEVATE framework. ELEVATE exploits entity information from Web contents and harnesses location related data for language-related event diffusion prediction. Our experiments on event spreading across Wikipedia communities of different language demonstrate the viability of our approach and improvement over state-of-the-art approaches.

[1]  Nathan Kallus,et al.  Predicting crowd behavior with big public data , 2014, WWW.

[2]  Chris Callison-Burch,et al.  WikiTopics: What is Popular on Wikipedia and Why , 2011 .

[3]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[4]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[5]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[6]  Nitesh V. Chawla,et al.  CoupledLP: Link Prediction in Coupled Networks , 2015, KDD.

[7]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Francesco Gullo,et al.  Graph-Based Breaking News Detection on Wikipedia , 2016, Wiki@ICWSM.

[9]  Eric Horvitz,et al.  Mining the web to predict future events , 2013, WSDM.

[10]  Sören Auer,et al.  AGDISTIS - Graph-Based Disambiguation of Named Entities Using Linked Data , 2014, International Semantic Web Conference.

[11]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[12]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[13]  Axel Schulz,et al.  Small-Scale Incident Detection based on Microposts , 2015, HT.

[14]  Jure Leskovec,et al.  The Network Completion Problem: Inferring Missing Nodes and Edges in Networks , 2011, SDM.

[15]  Miles Osborne,et al.  Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics (HLT '10) , 2010 .

[16]  Lei Tang,et al.  Large scale multi-label classification via metalabeler , 2009, WWW '09.

[17]  Grigorios Tsoumakas,et al.  Multi-Label Classification: An Overview , 2007, Int. J. Data Warehous. Min..

[18]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[19]  Gerhard Weikum,et al.  AIDA: An Online Tool for Accurate Disambiguation of Named Entities in Text and Tables , 2011, Proc. VLDB Endow..

[20]  Gerhard Weikum,et al.  YAGO2: A Spatially and Temporally Enhanced Knowledge Base from Wikipedia: Extended Abstract , 2013, IJCAI.

[21]  Fabian M. Suchanek,et al.  Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia , 2007 .

[22]  Nicola Barbieri,et al.  Who to follow and why: link prediction with explanations , 2014, KDD.

[23]  James Allan,et al.  Entity query feature expansion using knowledge base links , 2014, SIGIR.

[24]  Peng Wang,et al.  Link prediction in social networks: the state-of-the-art , 2014, Science China Information Sciences.

[25]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[26]  P. Jaccard,et al.  Etude comparative de la distribution florale dans une portion des Alpes et des Jura , 1901 .

[27]  Simone Paolo Ponzetto,et al.  WikiRelate! Computing Semantic Relatedness Using Wikipedia , 2006, AAAI.

[28]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[29]  Jon Kleinberg,et al.  The link prediction problem for social networks , 2003, CIKM '03.

[30]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[31]  Gerhard Weikum,et al.  Robust Disambiguation of Named Entities in Text , 2011, EMNLP.

[32]  Praveen Paritosh,et al.  Freebase: a collaboratively created graph database for structuring human knowledge , 2008, SIGMOD Conference.

[33]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.

[34]  Joemon M. Jose,et al.  Wikipedia as a time machine , 2014, WWW.

[35]  Christian Bizer,et al.  DBpedia spotlight: shedding light on the web of documents , 2011, I-Semantics '11.

[36]  M. Osborne,et al.  Bieber no more : First Story Detection using Twitter and Wikipedia , 2012 .

[37]  Miles Osborne,et al.  Streaming First Story Detection with application to Twitter , 2010, NAACL.

[38]  Matthew Rowe,et al.  Harnessing linked knowledge sources for topic classification in social media , 2013, HT '13.

[39]  Nicu Sebe,et al.  Event Oriented Dictionary Learning for Complex Event Detection , 2015, IEEE Transactions on Image Processing.

[40]  Avishek Anand,et al.  How much is Wikipedia Lagging Behind News? , 2015, WebSci.

[41]  Wael Khreich,et al.  A Survey of Techniques for Event Detection in Twitter , 2015, Comput. Intell..

[42]  John S. Brownstein,et al.  Wikipedia Usage Estimates Prevalence of Influenza-Like Illness in the United States in Near Real-Time , 2014, PLoS Comput. Biol..