Dendritic signal integration

Recent studies have identified various forms of active dendritic signals that may contribute to neuronal integration. One of the most remarkable findings is the demonstration of highly localized Ca2+ transients that are limited to small dendritic segments and even to single dendritic spines. In addition, through use of the powerful two-photon excitation imaging technique, it has been possible to reveal the existence of dendritic Ca2+ signals under in vivo conditions. Finally, active backpropagation of action potentials into dendrites has been shown to boost dendritic Ca2+ signals supralinearly and, thus, to contribute to the induction of long-term potentiation.

[1]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[2]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[3]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.

[4]  B Sakmann,et al.  Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. , 1995, The Journal of physiology.

[5]  D W Tank,et al.  Direct Measurement of Coupling Between Dendritic Spines and Shafts , 1996, Science.

[6]  Dimitri M. Kullmann,et al.  Ca2+ Entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus , 1992, Neuron.

[7]  G. Buzsáki,et al.  Pattern and inhibition-dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in vivo. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[9]  John Garthwaite,et al.  Frequency detection and temporally dispersed synaptic signal association through a metabotropic glutamate receptor pathway , 1997, Nature.

[10]  Christof Koch,et al.  Computation and the single neuron , 1997, Nature.

[11]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[12]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[13]  W. N. Ross,et al.  IPSPs strongly inhibit climbing fiber-activated [Ca2+]i increases in the dendrites of cerebellar Purkinje neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  J. Connor,et al.  Micromolar Ca2+ transients in dendritic spines of hippocampal pyramidal neurons in brain slice , 1995, Neuron.

[15]  Masao Ito Cerebellar long-term depression. , 1996 .

[16]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[17]  W. Singer,et al.  Calcium-induced long-term depression in the visual cortex of the rat in vitro. , 1996, Journal of neurophysiology.

[18]  B. Sakmann,et al.  Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. , 1996, Biophysical journal.

[19]  W. N. Ross,et al.  The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons , 1992, Nature.

[20]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[21]  R. Nicoll,et al.  Ca2+ Signaling Requirements for Long-Term Depression in the Hippocampus , 1996, Neuron.

[22]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[23]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[24]  S. Wang,et al.  Confocal imaging and local photolysis of caged compounds: Dual probes of synaptic function , 1995, Neuron.

[25]  N. Hartell,et al.  Strong Activation of Parallel Fibers Produces Localized Calcium Transients and a Form of LTD That Spreads to Distant Synapses , 1996, Neuron.

[26]  A. Pestronk Histology of the Nervous System of Man and Vertebrates , 1997, Neurology.

[27]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[28]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[29]  J. Connor,et al.  Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices. , 1996, Journal of neurophysiology.

[30]  N. Spruston,et al.  Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. , 1995, Science.

[31]  M. Larkum,et al.  Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures. , 1996, Journal of neurophysiology.

[32]  D. Linden,et al.  Defining a Minimal Computational Unit for Cerebellar Long-Term Depression , 1996, Neuron.

[33]  M. Häusser,et al.  Initiation and spread of sodium action potentials in cerebellar purkinje cells , 1994, Neuron.

[34]  H. Markram,et al.  Dendritic calcium transients evoked by single back‐propagating action potentials in rat neocortical pyramidal neurons. , 1995, The Journal of physiology.

[35]  D. Johnston,et al.  Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. , 1995, Science.

[36]  R. Tsien,et al.  Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization-induced Ca2+ transients , 1995, Neuron.

[37]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[38]  W. Denk,et al.  Two types of calcium response limited to single spines in cerebellar Purkinje cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[39]  B H Gähwiler,et al.  Low-Threshold Ca2+ Currents in Dendritic Recordings from Purkinje Cells in Rat Cerebellar Slice Cultures , 1997, The Journal of Neuroscience.

[40]  D. Linden,et al.  A Protein Synthesis–Dependent Late Phase of Cerebellar Long-Term Depression , 1996, Neuron.

[41]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[42]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[43]  A. Konnerth,et al.  Fractional contribution of calcium to the cation current through glutamate receptor channels , 1993, Neuron.

[44]  R. Malenka,et al.  Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation , 1992, Neuron.

[45]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[46]  A. Macdermott,et al.  Synaptic strengthening through activation of Ca2+ -permeable AMPA receptors , 1996, Nature.

[47]  H. Markram,et al.  Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[48]  O. Garaschuk,et al.  Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. , 1996, The Journal of physiology.

[49]  Masao Ito The cellular basis of cerebellar plasticity , 1991, Current Opinion in Neurobiology.

[50]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[51]  R. Llinás,et al.  Localization of P-type calcium channels in the central nervous system. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[52]  N. Hartell,et al.  Inhibition of cGMP Breakdown Promotes the Induction of Cerebellar Long-Term Depression , 1996, The Journal of Neuroscience.

[53]  O. Garaschuk,et al.  Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  K. I. Blum,et al.  Visualizing hippocampal synaptic function by optical detection of Ca2+ entry through the N-methyl-D-aspartate channel. , 1994, Proceedings of the National Academy of Sciences of the United States of America.