Approximate rank-detecting factorization of low-rank tensors

We present an algorithm, AROFAC2, which detects the (CP-)rank of a degree 3 tensor and calculates its factorization into rank-one components. We provide generative conditions for the algorithm to work and demonstrate on both synthetic and real world data that AROFAC2 is a potentially outperforming alternative to the gold standard PARAFAC over which it has the advantages that it can intrinsically detect the true rank, avoids spurious components, and is stable with respect to outliers and non-Gaussian noise.

[1]  Franz J. Király,et al.  An Algebraic Method for Approximate Rank One Factorization of Rank Deficient Matrices , 2012, LVA/ICA.

[2]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[3]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[4]  Mia Hubert,et al.  Automatically identifying scatter in fluorescence data using robust techniques , 2007 .

[5]  Alle-Jan van der Veen,et al.  Joint diagonalization via subspace fitting techniques , 2001, ICASSP.

[6]  Jean-Francois Cardoso,et al.  ITERATIVE TECHNIQUES FOR BLIND SOURCE SEPARATION USING ONLY FOURTH-ORDER CUMULANTS , 1992 .

[7]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Nikos D. Sidiropoulos,et al.  A PARAFAC-based technique for detection and localization of multiple targets in a MIMO radar system , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[10]  S. Engelen,et al.  A fully robust PARAFAC method for analyzing fluorescence data , 2009 .

[11]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[12]  Lieven De Lathauwer,et al.  An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..

[13]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[14]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[15]  Rasmus Bro,et al.  Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models , 2003 .

[16]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[17]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[18]  N.D. Sidiropoulos,et al.  Low-rank decomposition of multi-way arrays: a signal processing perspective , 2004, Processing Workshop Proceedings, 2004 Sensor Array and Multichannel Signal.

[19]  Franz J. Király,et al.  Algebraic Geometric Comparison of Probability Distributions , 2012, J. Mach. Learn. Res..

[20]  Pierre Comon,et al.  Special Issue on Tensor Decompositions and Applications , 2008, SIAM J. Matrix Anal. Appl..

[21]  M. Hubert,et al.  Detecting outlying samples in a parallel factor analysis model. , 2011, Analytica chimica acta.

[22]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..