On - and -Linear Lifts of the Golay Codes
暂无分享,去创建一个
[1] Marcus Greferath,et al. On the Extended Error-Correcting Capabilities of the Quaternary Preparata Codes , 1998, IEEE Trans. Inf. Theory.
[2] A. Nechaev,et al. Kerdock code in a cyclic form , 1989 .
[3] M. Elia,et al. Algebraic decoding of the ternary (11,6,5) Golay code , 1992 .
[4] A. A. Nechaev,et al. Linearly presentable codes , 1996 .
[5] Marcus Greferath,et al. Efficient Decoding of -Linear Codes , 1998 .
[6] A. Robert Calderbank,et al. Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.
[7] Elwyn R. Berlekamp,et al. Algebraic coding theory , 1984, McGraw-Hill series in systems science.
[8] Christine Bachoc,et al. Type II codes over Z4 , 1997, IEEE Trans. Inf. Theory.
[9] Eric M. Rains. Optimal self-dual codes over Z4 , 1999, Discret. Math..
[10] N. J. A. Sloane,et al. The ternary Golay code, the integers mod 9, and the Coxeter-Todd lattice , 1996, IEEE Trans. Inf. Theory.
[11] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[12] Jay A. Wood. Extension Theorems for Linear Codes over Finite Rings , 1997, AAECC.
[13] Michele Elia,et al. Algebraic decoding of the (23, 12, 7) Golay code , 1987, IEEE Trans. Inf. Theory.