Contact open books with flexible pages

. We give an elementary topological obstruction for a manifold M of dimension 2 q +1 ≥ 7 to admit a contact open book with flexible Weinstein pages and c 1 ( π 2 ( M )) = 0: if the torsion subgroup of the q -th integral homology group is non-zero, then no such contact open book exists. We achieve this by proving that a symplectomorphism of a flexible Weinstein manifold acts trivially on integral cohomology. We also produce examples of non-trivial loops of flexible contact structures using related ideas.

[1]  Emmanuel Giroux Ideal Liouville Domains, a cool gadget , 2017, Journal of Symplectic Geometry.

[2]  Oleg Lazarev Contact Manifolds with Flexible Fillings , 2016, Geometric and Functional Analysis.

[3]  Jeff Hicks,et al.  Morse homology , 2019, Discrete Morse Theory.

[4]  K. Cieliebak,et al.  Symplectic homology and the Eilenberg-Steenrod axioms , 2015, 1511.00485.

[5]  Emmy Murphy,et al.  Subflexible symplectic manifolds , 2015, 1510.01867.

[6]  M. S. Borman,et al.  Existence and classification of overtwisted contact structures in all dimensions , 2014, 1404.6157.

[7]  A. Stipsicz,et al.  The topology of Stein fillable manifolds in high dimensions, II , 2014, 1409.7504.

[8]  K. Cieliebak,et al.  From Stein to Weinstein and Back: Symplectic Geometry of Affine Complex Manifolds , 2012 .

[9]  H. Geiges,et al.  OPEN BOOKS AND THE WEINSTEIN CONJECTURE , 2012, 1210.7947.

[10]  O. Koert Lecture notes on stabilization of contact open books , 2010, 1012.4359.

[11]  T. Ekholm,et al.  Effect of Legendrian surgery , 2009, 0911.0026.

[12]  Hansjörg Geiges,et al.  An introduction to contact topology , 2008 .

[13]  John B. Etnyre,et al.  The contact homology of Legendrian submanifolds in R2n+1 , 2005 .

[14]  L. Kauffman,et al.  Kernel of the variation operator and periodicity of open books , 2003, math/0308277.

[15]  Emmanuel Giroux Géométrie de contact: de la dimension trois vers les dimensions supérieures , 2003 .

[16]  Y. Eliashberg TOPOLOGICAL CHARACTERIZATION OF STEIN MANIFOLDS OF DIMENSION >2 , 1990 .

[17]  Matthias Kreck,et al.  Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds , 1979 .