Ruthenium(II) and osmium(II) vinyl complexes as highly sensitive and selective chromogenic and fluorogenic probes for the sensing of carbon monoxide in air.

The detection of carbon monoxide in solution and air has been achieved using simple, inexpensive systems based on the vinyl complexes [M(CHCHR)Cl(CO)(BTD)(PPh3 )2 ] (R=aryl, BTD=2,1,3-benzothiadiazole). Depending on the nature of the vinyl group, chromogenic and fluorogenic responses signalled the presence of this odourless, tasteless, invisible, and toxic gas. Solutions of the complexes in CHCl3 underwent rapid change between easily differentiated colours when exposed to air samples containing CO. More significantly, the adsorption of the complexes on silica produced colorimetric probes for the naked-eye detection of CO in the gas phase. Structural data for key species before and after the addition of CO were obtained by means of single X-ray diffraction studies. In all cases, the ruthenium and osmium vinyl complexes studied showed a highly selective response to CO with exceptionally low detection limits. Naked-eye detection of CO at concentrations as low as 5 ppb in air was achieved with the onset of toxic levels (i.e., 100 ppm), thus resulting in a remarkably clear colour change. Moreover, complexes bearing pyrenyl, naphthyl, and phenanthrenyl moieties were fluorescent, and greater sensitivities were achieved (through turn-on emission fluorescence) in the presence of CO both in solution and air. This behaviour was explored computationally using time-dependent density functional theory (TDDFT) experiments. In addition, the systems were shown to be selective for CO over all other gases tested, including water vapour and common organic solvents. Supporting the metal complexes on cellulose strips for use in an existing optoelectronic device allows numerical readings for the CO concentration to be obtained and provision of an alarm system.

[1]  Dejian Huang,et al.  Cleavage of F–C(sp2) bonds by MHR(CO)(PtBu2Me)2 (M = Os and Ru; R = H, CH3 or Aryl): Product dependence on M and R , 2006 .

[2]  Anthony F. Hill,et al.  PHOSPHAALKIN-HYDROMETALLIERUNG : SYNTHESE VON RUCL(P=CHTBU)(CO)(PPH3)2 , 1996 .

[3]  A. F. Hill,et al.  Notes. Hydrido(benzochalcogenadiazole) complexes of ruthenium: crystal structure of [RuCl(H)(CO)(PPh3)(SN2C6H4)] , 1990 .

[4]  R. Winter,et al.  How to elucidate and control the redox sequence in vinylbenzoate and vinylpyridine bridged diruthenium complexes. , 2010, Dalton transactions.

[5]  R. Martínez‐Máñez,et al.  Controlled delivery systems using antibody-capped mesoporous nanocontainers. , 2009, Journal of the American Chemical Society.

[6]  R. Martínez‐Máñez,et al.  Selective and sensitive chromofluorogenic detection of the sulfite anion in water using hydrophobic hybrid organic-inorganic silica nanoparticles. , 2013, Angewandte Chemie.

[7]  Miguel A. Esteruelas,et al.  1,2,3-DIHETEROCYCLIZATION REACTIONS ON THE ALLENYLIDENE LIGAND OF A RUTHENIUM COMPLEX , 1998 .

[8]  E. Gutiérrez‐Puebla,et al.  Hydride−Hydroxyosmacyclopropene versus Hydride−Hydroxycarbyne and Cyclic Hydroxycarbene: Influence of the Substituents at the C(OH) Carbon Atom of the Carbon Donor Ligand , 2000 .

[9]  X. Solans,et al.  Reactions of Ru(CO)HCl(PPh3)3 with activated mono- and disubstituted acetylenes. Crystal structure of [cyclic] [(PPh3)2(CO)(MeO2CC.tplbond.C)Ru(MeOOCC:CHCH:CHCO2Me)] , 1987 .

[10]  K. G. Caulton,et al.  A comprehensive view of M–H addition across the RCCH bond: frustration culminating in ultimate union , 2001 .

[11]  H. Werner,et al.  Cationic Vinyl and Dicationic Carbene Ruthenium(II) Complexes from a Vinylidene(hydrido) Precursor , 2001 .

[12]  R. Martínez‐Máñez,et al.  Surfactant-assisted chromogenic sensing of cyanide in water , 2009 .

[13]  A. Vegas,et al.  Reactions of cationic hydrido complexes [Ru(CO)H(MeCN)2(PPh3)2]A (A ClO4, PF6) with alkynes. The crystal structure of [Ru(CO) (MeOOCCCHCOOMe) (MeCN)2(PPh3)2]ClO4 , 1989 .

[14]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .

[15]  H. Werner,et al.  Vinyl and carbene ruthenium(II) complexes from hydridoruthenium(II) precursors. , 2004, Dalton transactions.

[16]  R. Martínez‐Máñez,et al.  A chromo-fluorogenic synthetic "canary" for CO detection based on a pyrenylvinyl ruthenium(II) complex. , 2014, Journal of the American Chemical Society.

[17]  F. Lahoz,et al.  Synthesis of Butadiene-Osmium(0) and -Ruthenium(0) complexes by reductive Carbon-Carbon coupling of two alkenyl fragments , 1995 .

[18]  Juan J. González,et al.  THE EFFECT OF N-DONOR LIGANDS ON THE REACTION OF RUTHENIUM HYDRIDES WITH 1-ALKYNES , 1997 .

[19]  M. C. Harris,et al.  Reactions of ruthenium complex [RuClH(CO)(BSD)(PPh3)2] (BSD = benzo-2,1,3-selenadiazole) with alkynes , 1991 .

[20]  M. Puchberger,et al.  Stereospezifische und reversible Bindung von CO an Eisen‐Pinzettenkomplexen , 2008 .

[21]  S. Clément,et al.  Electron delocalization in vinyl ruthenium substituted cyclophanes: Assessment of the through-space and the through-bond pathways , 2011 .

[22]  H. Werner,et al.  A Series of Vinylidene‐, Vinyl‐, Carbene‐ and Carbyneruthenium(II) Complexes with [Ru(PCy3)2] and [Ru(PiPr3)2] as Molecular Building Blocks , 2004 .

[23]  A. Echavarren,et al.  Reaction of alkenyl carbonyl ruthenium(II) complexes with t-butyl isocyanide. Synthesis of η1-acylruthenium(II) complexes by intramolecular CO insertion , 1990 .

[24]  N. Ruiz,et al.  Five-Coordinate Complexes MHCl(CO)(PiPr3)2 (M = Os, Ru) as Precursors for the Preparation of New Hydrido− and Alkenyl−Metallothiol and Monothio−β-Diketonato Derivatives , 1997 .

[25]  A. Echavarren,et al.  Bis-insertion reactions of Ru(CO)HCl(PPh3)3 with methyl propiolate. The unexpected formation of (methoxycarbonylethenyl)triphenylphosphonium chloride , 1989 .

[26]  Ramón Martínez-Máñez,et al.  An optoelectronic sensing device for CO detection in air based on a binuclear rhodium complex , 2014 .

[27]  H. Werner,et al.  Preparation of Trifluorophosphaneruthenium(II) Complexes from η3:η3‐Cyclooctadienediylruthenium(IV) Compounds as Precursors , 2002 .

[28]  Miguel A. Esteruelas,et al.  C−C Coupling of the Alkynyl and Alkenyl Fragments of Os(C2CO2CH3){CHCHC(O)OCH3}(CO)(PiPr3)2 by Action of HCl: The Vinylidene [Os{CHCHC(O)OCH3}(CCHCO2CH3)(CO)(PiPr3)2]BF4 as Intermediate , 1999 .

[29]  R. Winter,et al.  Ruthenium stilbenyl and diruthenium distyrylethene complexes: aspects of electron delocalization and electrocatalyzed isomerization of the Z-isomer. , 2012, Journal of the American Chemical Society.

[30]  Jürgen Wolfrum,et al.  Lasers in combustion: From basic theory to practical devices , 1998 .

[31]  Cameron Jones,et al.  Phosphaalkyne Hydrometalation: Synthesis of [RuCl(PCHtBu)(CO)(PPH3)2] , 1996 .

[32]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[33]  W. Kaim,et al.  Charge Delocalization in a Heterobimetallic Ferrocene−(Vinyl)Ru(CO)Cl(PiPr3)2 System††Dedicated to Prof. Dr. Helmut Werner on the occasion of his 75th birthday , 2009 .

[34]  Miguel A. Esteruelas,et al.  Carbon−Carbon Coupling of Two Alkenyl Fragments on a Saturated Compound , 1997 .

[35]  Christopher J. Chang,et al.  A reaction-based fluorescent probe for selective imaging of carbon monoxide in living cells using a palladium-mediated carbonylation. , 2012, Journal of the American Chemical Society.

[36]  B. Zhao,et al.  A selective fluorescent probe for carbon monoxide imaging in living cells. , 2012, Angewandte Chemie.

[37]  W. Kaim,et al.  Ruthenium complexes with vinyl, styryl, and vinylpyrenyl ligands: a case of non-innocence in organometallic chemistry. , 2008, Journal of the American Chemical Society.

[38]  M. Drescher,et al.  Fully delocalized (ethynyl)(vinyl)phenylene bridged triruthenium complexes in up to five different oxidation states. , 2012, Inorganic chemistry.

[39]  T. Exner,et al.  Charge and Spin Confinement to the Amine Site in 3-Connected Triarylamine Vinyl Ruthenium Conjugates , 2013 .

[40]  A. Vegas,et al.  Insertion reactions of dimethyl acetylenedicarboxylate with alkenylruthenium complexes of the type [Ru(CO)Cl(R′CCHR)(PPh3)2]. The crystal structure of [RCCC(CO2Me)-CHCHCMe3}(PPh3)2] , 1987 .

[41]  R. Winter,et al.  Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes. , 2009, Journal of the American Chemical Society.

[42]  A. Hill,et al.  Diyne coordination chemistry: Reactions of [RuClH(CO)(PPh3)3] with diphenylbutadiyne and bis(phenylethynyl)mercury , 1990 .

[43]  W. Kaim,et al.  Towards new organometallic wires: tetraruthenium complexes bridged by phenylenevinylene and vinylpyridine ligands. , 2007, Chemistry.

[44]  W. Kaim,et al.  Ligand-Centered Oxidations and Electron Delocalization in a Tetranuclear Complex of a Tetradonor-Substituted Olefin , 2008 .

[45]  M. C. Harris,et al.  Diyne coordination chemistry—III. On the reactions of [RuClH(CO)(PPh3)3] with bis(alkynyl)mercurials , 1992 .

[46]  R. Winter,et al.  Vinyl-ruthenium entities as markers for intramolecular electron transfer processes , 2011 .

[47]  R. Martínez‐Máñez,et al.  The determination of methylmercury in real samples using organically capped mesoporous inorganic materials capable of signal amplification. , 2009, Angewandte Chemie.

[48]  O. Ito,et al.  Carbon monoxide ligand-exchange reaction of triruthenium cluster complexes induced by photosensitized electron transfer: a new type of photoactive CO color sensor. , 2006, Inorganic chemistry.

[49]  David J. Williams,et al.  Organometallic Macrocycle Chemistry. 5.1 σ-Vinyl and σ-Aryl Complexes of Ruthenium(II) Ligated by 1,4,7-Trithiacyclononane: X-ray Crystal Structure of [Ru(CHCH2)(CO)(PPh3)([9]aneS3)]PF6·2CH2Cl2 , 1996 .

[50]  H. Werner,et al.  Vinylidene, Vinyl, and Carbene Ruthenium Complexes with Chelating Diphosphanes as Ligands , 2001 .

[51]  D. Tocher,et al.  Ruthenium hydride and vinyl complexes supported by nitrogen-oxygen mixed-donor ligands , 2005 .

[52]  R. Winter,et al.  Bridge dominated oxidation of a diruthenium 1,3-divinylphenylene complex. , 2004, Chemical communications.

[53]  R. Winter,et al.  Studies on a vinyl ruthenium-modified squaraine dye: multiple visible/near-infrared absorbance switching through dye- and substituent-based redox processes. , 2012, Chemistry.

[54]  David J. Williams,et al.  PHOSPHAALKYNE HYDROMETALATION : SYNTHESIS AND REACTIVITY OF THE COMPLEXES RU(P=CHCME3)CL(CA)(PPH3)2 (A=O, S) , 1998 .

[55]  A. Echavarren,et al.  Reactions of alkenyl and alkynyl ruthenium(II) complexes with isocyanides: Synthesis of α, β-unsaturated η1-acylruthenium(II) complexes and X-ray structure of [Ru(CCPh)(CN+Bu)3(PPh3)2]PF6 , 1992 .

[56]  Ana M. López,et al.  Reactions of [RuH(η3C3H5)(CO)(PiPr3)2] and [Ru(η2C2Ph2)(CO)(PiPr3)2] with terminal alkynes: synthesis and characterization of new five- and six-coordinate bis(alkynyl) and alkynyl(vinyl) derivatives of ruthenium(II) , 1995 .

[57]  A. deMello,et al.  Hemilabile and reversible carbon monoxide binding properties of iron(II), cobalt(II) and nickel(II) complexes containing a new tridentate P-S-N ligand. , 2012, Dalton transactions.

[58]  Miguel A. Esteruelas,et al.  The Dihydride−Osmium(IV) Complex [OsH2(κ2-O2CCH3)(H2O)(PiPr3)2]BF4 as a Precursor for Carbon−Carbon Coupling Reactions , 2000 .

[59]  Jürgen Wöllenstein,et al.  Comparison of gas sensor technologies for fire gas detection , 2011 .

[60]  Miguel A. Esteruelas,et al.  One-pot synthesis for osmium(II) azavinylidene-carbyne and azavinylidene-alkenylcarbyne complexes starting from an osmium(II) hydride-azavinylidene compound , 2001 .

[61]  A. Vegas,et al.  Reactions of [Ru(CO)ClH(Me2Hpz)(PR3)2] (Me2Hpz = 3,5-dimethylpyrazole; R = Ph, p-tolyl) with acetylenes. The crystal structure of [Ru(CO)Cl(HC=CHCMe3)(Me2Hpz)(PPh3)2] and [Ru(CO)(MeO2CC=CHCO2Me)(HCO3)(PPh3)2] , 1988 .

[62]  Félix Sancenón,et al.  Sensitive and selective chromogenic sensing of carbon monoxide via reversible axial CO coordination in binuclear rhodium complexes. , 2011, Journal of the American Chemical Society.

[63]  E. Oñate,et al.  Δ2- and Δ3-azaosmetine complexes as intermediates in the stoichiometric imination of phenylacetylene with oximes , 2001 .

[64]  W. Kaim,et al.  Quantum chemical interpretation of redox properties of ruthenium complexes with vinyl and TCNX type non-innocent ligands , 2010 .

[65]  A. Echavarren,et al.  Phenylacetylene dimerization promoted by ruthenium(II) complexes , 1991 .

[66]  F. Lahoz,et al.  Selective protonation of the styryl ligand of RuMe{(E)-CH:CHPh}(CO)2(PiPr3)2 and migratory CO insertion in the methyl group of [RuMe(CO)2(PiPr3)2]BF4 , 1995 .

[67]  Francis Amalraj,et al.  CO sensor based on polypyrrole functionalized with iron porphyrin , 2009 .

[68]  R. Winter,et al.  Divinylphenylene- and Ethynylvinylphenylene-Bridged Mono-, Di-, and Triruthenium Complexes for Covalent Binding to Gold Electrodes , 2014 .

[69]  V. Brynzari,et al.  SnO2 films for thin film gas sensor design , 1999 .

[70]  A. Slawin,et al.  Sigma-organyl complexes of ruthenium and osmium supported by a mixed-donor ligand. , 2005, Dalton transactions.

[71]  R. Martínez‐Máñez,et al.  Mesoporous hybrid materials containing nanoscopic "binding pockets" for colorimetric anion signaling in water by using displacement assays. , 2009, Chemistry.

[72]  A. Vegas,et al.  Insertion reactions of acetylenes with hydridocarbonyl-chlorotris(triphenylphosphine)ruthenium(II). X-ray structure of carbonylchloro(cis-1,2-diphenylethenyl)bis(triphenylphosphine)ruthenium(II) , 1986 .

[73]  Miguel A. Esteruelas,et al.  Assembly of an allenylidene ligand, a terminal alkyne, and an acetonitrile molecule: formation of osmacyclopentapyrrole derivatives. , 2006, Journal of the American Chemical Society.

[74]  F. Lahoz,et al.  CARBON-CARBON COUPLING AND CARBON-HYDROGEN ACTIVATION REACTIONS IN BIS(TRIISOPROPYLPHOSPHINE)OSMIUM COMPLEXES , 1996 .

[75]  H. Werner,et al.  Die fördernde Rolle von Phosphinoester-Liganden bei der Synthese neutraler Carben-, Vinyliden- und Allenyliden-Ruthenium(II)-Komplexe† , 1995 .

[76]  D. Benoit,et al.  Spectroscopic, Structural and Theoretical Investigation of Alkenyl Ruthenium Complexes Supported by Sulfur–Nitrogen Mixed‐Donor Ligands , 2006 .

[77]  Miguel A. Esteruelas,et al.  C(sp2)−H Activation of RCHE−py (E = CH, N) and RCHCHC(O)R‘ Substrates Promoted by a Highly Unsaturated Osmium−Monohydride Complex , 2005 .

[78]  E. Oñate,et al.  Formation of Imine−Vinylidene−Osmium(II) Derivatives by Hydrogen Transfer from Alkenyl Ligands to Azavinylidene Groups in Alkenyl−Azavinylidene−Osmium(IV) Complexes , 2000 .

[79]  J. Wilton‐Ely,et al.  The coupling of methylene and vinyl ligands at a ruthenium(II) centre , 1997 .

[80]  A. Echavarren,et al.  Ruthenium‐Capping of Di‐ and Tetraethynylbiphenyls , 2001 .

[81]  K. G. Caulton,et al.  A comparative study of olefin or acetylene insertion into Ru–H or Os–H of MHCl(CO)(phosphine)2 , 2001 .

[82]  M. Tilset,et al.  Oxidatively Induced Reductive Elimination from Ru(C2Ph)2(CO)(PtBu2Me)2 and Ru(CHCHPh)(C2Ph)(CO)(PtBu2Me)2 , 1995 .

[83]  David J. Williams,et al.  Polyazolyl Chelate Chemistry. 8.1 Organometallic Dihydridobis(pyrazol-1-yl)borato Complexes of Ruthenium(II) , 1998 .

[84]  D. Tocher,et al.  Mixed-Donor Ligands: Pyrrolecarbaldehyde and Pyrrolecarbothioaldehyde σ-Organyl Complexes of Ruthenium(II) and Osmium(II) , 2005 .

[85]  I. Fragalà,et al.  Selective monitoring of parts per million levels of CO by covalently immobilized metal complexes on glass. , 2008, Chemical communications.

[86]  R. Martínez‐Máñez,et al.  Borate-driven gatelike scaffolding using mesoporous materials functionalised with saccharides. , 2009, Chemistry.

[87]  R. Martínez‐Máñez,et al.  Selective chromofluorogenic sensing of heparin by using functionalised silica nanoparticles containing binding sites and a signalling reporter. , 2009, Chemistry.

[88]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[89]  F. Lahoz,et al.  The Five-Coordinate Hydrido−Dihydrogen Complex [OsH(η2-H2)(CO)(PiPr3)2]BF4 Acting as a Template for the Carbon−Carbon Coupling between Methyl Propiolate and 1,1-Diphenyl-2-propyn-1-ol , 1998 .

[90]  K. Kirchner,et al.  Stereospecific and reversible CO binding at iron pincer complexes. , 2008, Angewandte Chemie.

[91]  A. Echavarren,et al.  Reaction of alkenyl-ruthenium(II) Ru(CO)Cl(RC=CHR′(PPh3)2 complexes with CO. Formation of dicarbonyl complexes or η2-acyl complexes depending on the R and R′ groups , 1991 .

[92]  Félix Sancenón,et al.  Sensitive and selective chromogenic sensing of carbon monoxide by using binuclear rhodium complexes. , 2010, Angewandte Chemie.