Extensive intra-host genetic diversity uncovered in Cryptosporidium parvum using Next Generation Sequencing.

[1]  Max R. Tolkoff,et al.  Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. , 2012, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[2]  M. Power,et al.  Fluorescence analysis detects gp60 subtype diversity in Cryptosporidium infections. , 2011, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[3]  F. Lucy,et al.  Longitudinal and spatial distribution of GP60 subtypes in human cryptosporidiosis cases in Ireland , 2011, Epidemiology and Infection.

[4]  A. Scuffham,et al.  Retrospective cohort study of an outbreak of cryptosporidiosis caused by a rare Cryptosporidium parvum subgenotype , 2010, Epidemiology and Infection.

[5]  G. Widmer,et al.  Comparison of Single- and Multilocus Genetic Diversity in the Protozoan Parasites Cryptosporidium parvum and C. hominis , 2010, Applied and Environmental Microbiology.

[6]  A. Jex,et al.  Highly sensitive non‐isotopic restriction endonuclease fingerprinting of nucleotide variability in the gp60 gene within Cryptosporidium species, genotypes and subgenotypes infective to humans, and its implications , 2010, Electrophoresis.

[7]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[8]  Samuel Alizon,et al.  Acute or Chronic? Within‐Host Models with Immune Dynamics, Infection Outcome, and Parasite Evolution , 2008, The American Naturalist.

[9]  S. Tzipori,et al.  Inferences about the Global Population Structures of Cryptosporidium parvum and Cryptosporidium hominis , 2008, Applied and Environmental Microbiology.

[10]  W. Pomroy,et al.  Genetic Diversity and Zoonotic Potential of Cryptosporidium parvum Causing Foal Diarrhea , 2008, Journal of Clinical Microbiology.

[11]  R. Fayer,et al.  Cryptosporidium and Cryptosporidiosis, Second Edition , 2007 .

[12]  A. Tait,et al.  Multilocus Analysis of Cryptosporidium hominis and Cryptosporidium parvum Isolates from Sporadic and Outbreak-Related Human Cases and C. parvum Isolates from Sporadic Livestock Cases in the United Kingdom , 2007, Journal of Clinical Microbiology.

[13]  Joseph D. Smith,et al.  Antigenic Variation in Plasmodium falciparum: Gene Organization and Regulation of the var Multigene Family , 2007, Eukaryotic Cell.

[14]  E. Domingo,et al.  Viruses as Quasispecies: Biological Implications , 2006, Current topics in microbiology and immunology.

[15]  J. McLauchlin,et al.  Unravelling Cryptosporidium and Giardia epidemiology. , 2005, Trends in parasitology.

[16]  I. Sulaiman,et al.  Unique Endemicity of Cryptosporidiosis in Children in Kuwait , 2005, Journal of Clinical Microbiology.

[17]  S. Enomoto,et al.  Cryptosporidium and cryptosporidiosis. , 2005, Advances in parasitology.

[18]  Peter Wiegand,et al.  Polymerase slippage in relation to the uniformity of tetrameric repeat stretches. , 2003, Forensic science international.

[19]  J. Wastling,et al.  Population Structures and the Role of Genetic Exchange in the Zoonotic Pathogen Cryptosporidium parvum , 2003, Journal of Molecular Evolution.

[20]  N. López-Villalobos,et al.  Controlling the onset of natural cryptosporidiosis in calves with paromomycin sulphate , 2002, Veterinary Record.

[21]  S. Farrington,et al.  Sequence interruptions confer differential stability at microsatellite alleles in mismatch repair-deficient cells. , 2000, Human molecular genetics.

[22]  S. Tzipori,et al.  Molecular Cloning and Expression of a Gene EncodingCryptosporidium parvum Glycoproteins gp40 and gp15 , 2000, Infection and Immunity.

[23]  J. Gut,et al.  Cloning and Sequence Analysis of a Highly Polymorphic Cryptosporidium parvum Gene Encoding a 60-Kilodalton Glycoprotein and Characterization of Its 15- and 45-Kilodalton Zoite Surface Antigen Products , 2000, Infection and Immunity.

[24]  P. Rochelle,et al.  Intra-isolate Heterogeneity and Reproducibility of PCR-based Genotyping of Cryptosporidium parvum Using the β-tubulin Gene , 2000 .

[25]  R. Lahue,et al.  Stabilizing Effects of Interruptions on Trinucleotide Repeat Expansions in Saccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[26]  S. Tzipori,et al.  Sequence Polymorphism in the β-Tubulin Gene Reveals Heterogeneous and Variable Population Structures inCryptosporidium parvum , 1998, Applied and Environmental Microbiology.

[27]  E. Domingo,et al.  Quasispecies structure and persistence of RNA viruses. , 1998, Emerging infectious diseases.

[28]  S. Tzipori,et al.  Sequence polymorphism in the beta-tubulin gene reveals heterogeneous and variable population structures in Cryptosporidium parvum. , 1998, Applied and environmental microbiology.

[29]  T. Petes,et al.  Stabilization of microsatellite sequences by variant repeats in the yeast Saccharomyces cerevisiae. , 1997, Genetics.

[30]  R. Phillips,et al.  Escape of human immunodeficiency virus from immune control. , 1997, Annual review of immunology.

[31]  P. Walsh,et al.  Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. , 1996, Nucleic acids research.

[32]  S. J. Upton,et al.  Cloning and Analysis of a Cryptosporidium parvum Gene Encoding a Protein with Homology to Cytoplasmic Form Hsp70 , 1995, The Journal of eukaryotic microbiology.

[33]  M A Nowak,et al.  The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease. , 1990, AIDS.

[34]  G. Paganotti,et al.  Past and current biological factors affecting malaria in the low transmission setting of Botswana: A review , 2020, Infection, Genetics and Evolution.