Between clique-width and linear clique-width of bipartite graphs

Abstract We consider hereditary classes of bipartite graphs where clique-width is bounded, but linear clique-width is not. Our goal is identifying classes that are critical with respect to linear clique-width. We discover four such classes and conjecture that this list is complete, i.e. a hereditary class of bipartite graphs of bounded clique-width that excludes a graph from each of the four critical classes has bounded linear clique-width.

[1]  Vadim V. Lozin,et al.  Linear Clique-Width of Bi-complement Reducible Graphs , 2018, IWOCA.

[2]  Udi Rotics,et al.  Clique-Width is NP-Complete , 2009, SIAM J. Discret. Math..

[3]  Gerard J. Chang,et al.  Quasi-threshold Graphs , 1996, Discret. Appl. Math..

[4]  Vadim V. Lozin,et al.  Boundary properties of the satisfiability problems , 2013, Inf. Process. Lett..

[5]  Vadim V. Lozin,et al.  Boundary Properties of Factorial Classes of Graphs , 2015, J. Graph Theory.

[6]  Dieter Rautenbach,et al.  Chordal bipartite graphs of bounded tree- and clique-width , 2004, Discret. Math..

[7]  Vadim V. Lozin,et al.  Upper Domination: Towards a Dichotomy Through Boundary Properties , 2016, Algorithmica.

[8]  Vadim V. Lozin,et al.  On the linear structure and clique-width of bipartite permutation graphs , 2003, Ars Comb..

[9]  Vadim V. Lozin,et al.  Boundary Properties of Well-Quasi-Ordered Sets of Graphs , 2013, Order.

[10]  Vadim V. Lozin,et al.  Minimal Classes of Graphs of Unbounded Clique-width and Well-quasi-ordering , 2015, ArXiv.

[11]  Udi Rotics,et al.  On the Clique-Width of Some Perfect Graph Classes , 2000, Int. J. Found. Comput. Sci..

[12]  Vadim V. Lozin,et al.  An attractive class of bipartite graphs , 2001, Discuss. Math. Graph Theory.

[13]  Vadim V. Lozin,et al.  The Clique-Width of Bipartite Graphs in Monogenic Classes , 2008, Int. J. Found. Comput. Sci..

[14]  Pinar Heggernes,et al.  Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs , 2012, Discret. Appl. Math..

[15]  Konrad Dabrowski,et al.  Bounding the clique-width of H-free split graphs , 2015, Discret. Appl. Math..

[16]  Vadim V. Lozin,et al.  Labelled Induced Subgraphs and Well-Quasi-Ordering , 2015, Order.

[17]  Konrad Dabrowski,et al.  On factorial properties of chordal bipartite graphs , 2012, Discret. Math..

[18]  Vadim V. Lozin,et al.  Linear Time Algorithm for Computing a Small Biclique in Graphs without Long Induced Paths , 2012, SWAT.

[19]  Egon Wanke,et al.  On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..

[20]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..

[21]  V. Giakoumakis,et al.  Bi-complement Reducible Graphs , 1997 .

[22]  Robert Brignall,et al.  Linear Clique-Width for Hereditary Classes of Cographs , 2017, J. Graph Theory.

[23]  Vadim V. Lozin,et al.  Infinitely many minimal classes of graphs of unbounded clique-width , 2018, Discret. Appl. Math..

[24]  Martin Charles Golumbic,et al.  Trivially perfect graphs , 1978, Discret. Math..

[25]  Dieter Rautenbach,et al.  The relative clique-width of a graph , 2007, J. Comb. Theory, Ser. B.

[26]  Ivan Hal Sudborough,et al.  The Vertex Separation and Search Number of a Graph , 1994, Inf. Comput..

[27]  Mamadou Moustapha Kanté,et al.  Linear rank-width and linear clique-width of trees , 2015, Theor. Comput. Sci..