High-dimensional time series prediction using kernel-based Koopman mode regression
暂无分享,去创建一个
Philip H. W. Leong | Gemunu H. Gunaratne | Duncan J. M. Moss | Farzad Noorian | Jia-Chen Hua | Duncan J. M. Moss | P. Leong | G. Gunaratne | Jia-Chen Hua | Farzad Noorian
[1] Michael Robinson,et al. Sheaves are the canonical data structure for sensor integration , 2016, Inf. Fusion.
[2] Ronald L. Allen,et al. Signal Analysis: Time, Frequency, Scale and Structure , 2003 .
[3] Gemunu H. Gunaratne,et al. Variable diffusion in stock market fluctuations , 2015 .
[4] Gemunu H. Gunaratne,et al. Ensemble vs. time averages in financial time series analysis , 2012 .
[5] Yifan Gong,et al. Towards better performance with heterogeneous training data in acoustic modeling using deep neural networks , 2014, INTERSPEECH.
[6] D. Giannakis. Data-driven spectral decomposition and forecasting of ergodic dynamical systems , 2015, Applied and Computational Harmonic Analysis.
[7] E. B. Andersen,et al. Information Science and Statistics , 1986 .
[8] Feng Ding,et al. Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering , 2017, J. Frankl. Inst..
[9] Feng Ding,et al. A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay , 2017, Signal Process..
[10] Mehdi Ghommem,et al. Real-time tumor ablation simulation based on the dynamic mode decomposition method. , 2014, Medical physics.
[11] Philip Heng Wai Leong,et al. Dynamic hedging of foreign exchange risk using stochastic model predictive control , 2014, 2014 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr).
[12] Andrzej Banaszuk,et al. Comparison of systems with complex behavior , 2004 .
[13] M. Golubitsky,et al. Singularities and groups in bifurcation theory , 1985 .
[14] Wei Zhang,et al. Improved least squares identification algorithm for multivariable Hammerstein systems , 2015, J. Frankl. Inst..
[15] Meng Joo Er,et al. Hybrid recursive least squares algorithm for online sequential identification using data chunks , 2016, Neurocomputing.
[16] Nadine Aubry,et al. Spatiotemporal analysis of complex signals: Theory and applications , 1991 .
[17] Steven L. Brunton,et al. Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..
[18] Steven L. Brunton,et al. Multi-Resolution Dynamic Mode Decomposition , 2015 .
[19] I. Mezić,et al. Applied Koopmanism. , 2012, Chaos.
[20] Dongqing Wang,et al. Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models , 2016, Appl. Math. Lett..
[21] J. McCauley,et al. Using dynamic mode decomposition to extract cyclic behavior in the stock market , 2016 .
[22] Heni Ben Amor,et al. Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.
[23] Clarence W. Rowley,et al. A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.
[24] I. Mezić. Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .
[25] P. Schmid. Nonmodal Stability Theory , 2007 .
[26] P. Schmid,et al. Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.
[27] Gemunu H Gunaratne,et al. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[28] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[29] Bingni W. Brunton,et al. Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.
[30] M. Cross,et al. Pattern formation outside of equilibrium , 1993 .
[31] B. O. Koopman,et al. Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.
[32] Geoffrey Zweig,et al. Recent advances in deep learning for speech research at Microsoft , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.
[33] Steven L. Brunton,et al. On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.
[34] James R. Gord,et al. Dynamic-mode decomposition based analysis of shear coaxial jets with and without transverse acoustic driving , 2016, Journal of Fluid Mechanics.
[35] I. Mezić,et al. Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .
[36] Peter J. Schmid,et al. Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.
[37] Joseph C. Slater,et al. A numerical method for determining nonlinear normal modes , 1996 .
[38] Yoav Freund,et al. Boosting: Foundations and Algorithms , 2012 .
[39] Rob J Hyndman,et al. Automatic Time Series Forecasting: The forecast Package for R , 2008 .
[40] Steven L. Brunton,et al. Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..
[41] Zhi-Hua Zhou,et al. Ensemble Methods: Foundations and Algorithms , 2012 .
[42] Alexandre Mauroy,et al. Linear identification of nonlinear systems: A lifting technique based on the Koopman operator , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).
[43] Clarence W. Rowley,et al. Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis , 2014, 1411.5424.
[44] Robert Allen,et al. Handbook of Medical Imaging—Processing and Analysis , 2001 .
[45] I. Mezić,et al. Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.
[46] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[47] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[48] J. Nathan Kutz,et al. Dynamic mode decomposition for financial trading strategies , 2015, 1508.04487.
[49] Bernhard Schölkopf,et al. A kernel view of the dimensionality reduction of manifolds , 2004, ICML.
[50] J.S.Chitode. DIGITAL SIGNAL PROCESSING FUNDAMENTALS , 2011 .
[51] Philip H. W. Leong,et al. Stochastic Receding Horizon Control for Short-Term Risk Management in Foreign Exchange , 2015 .
[52] Wei Xing Zheng,et al. Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements , 2017, J. Frankl. Inst..
[53] Joshua Garland,et al. Model-free quantification of time-series predictability. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[54] Meng Joo Er,et al. Constructive multi-output extreme learning machine with application to large tanker motion dynamics identification , 2014, Neurocomputing.
[55] Philip H. W. Leong,et al. On Time Series Forecasting Error Measures for Finite Horizon Control , 2017, IEEE Transactions on Control Systems Technology.
[56] Julien M. Hendrickx,et al. Spectral Identification of Networks Using Sparse Measurements , 2016, SIAM J. Appl. Dyn. Syst..
[57] I. Mezic,et al. Nonlinear Koopman Modes and a Precursor to Power System Swing Instabilities , 2012, IEEE Transactions on Power Systems.
[58] Bernhard Schölkopf,et al. The Kernel Trick for Distances , 2000, NIPS.
[59] Mohammad Valipour. Ability of Box-Jenkins Models to Estimate of Reference Potential Evapotranspiration (A Case Study: Mehrabad Synoptic Station, Tehran, Iran) , 2012 .
[60] Christophe Pierre,et al. Non-linear normal modes, invariance, and modal dynamics approximations of non-linear systems , 1995, Nonlinear Dynamics.
[61] M. Valipour. Long‐term runoff study using SARIMA and ARIMA models in the United States , 2015 .
[62] F. Ding,et al. Multi-innovation stochastic gradient identification for Hammerstein controlled autoregressive autoregressive systems based on the filtering technique , 2015 .
[63] Adrian E. Raftery,et al. Weather Forecasting with Ensemble Methods , 2005, Science.
[64] Zhizhen Zhao,et al. Spatiotemporal Feature Extraction with Data-Driven Koopman Operators , 2015, FE@NIPS.
[65] George Haller,et al. Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction , 2016, 1602.00560.
[66] Steven L. Brunton,et al. Compressed Dynamic Mode Decomposition for Real-Time Object Detection , 2015, ArXiv.
[67] Meng Joo Er,et al. Generalized Single-Hidden Layer Feedforward Networks for Regression Problems , 2015, IEEE Transactions on Neural Networks and Learning Systems.
[68] Meng Joo Er,et al. Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares , 2014, IEEE Transactions on Neural Networks and Learning Systems.
[69] Joshua L. Proctor,et al. Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.
[70] Steven L. Brunton,et al. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.
[71] Farzad Noorian,et al. Risk Management using Model Predictive Control , 2015 .
[72] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[73] Patrick T. Brewick,et al. An evaluation of data-driven identification strategies for complex nonlinear dynamic systems , 2016 .
[74] M. Valipour,et al. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir , 2013 .
[75] Matthew O. Williams,et al. A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.