Effects of Texas Fly Ash on Air-Entrainment in Concrete: Comprehensive Report

This report summarizes a comprehensive joint research project, funded by the Texas Department of Transportation (TxDOT) and performed by researchers at the University of Texas at Austin and Cornell University. This three-volume report is perhaps the most complete study to date on this topic. It is expected that the key findings from this study will be of benefit to practitioners in Texas and beyond. The report includes the following three volumes: Volume 1 (Chapters 2–9)—“Evaluating the Influence of Fly Ash on Air-Entrained Concrete,” based on Nathan Harris’s Ph.D. Dissertation at Cornell University (2007); Volume 2 (Chapters 10–17)—“The Effects of Fly Ash on the Ability to Entrain and Stabilize Air in Concrete,” Tyler Ley’s Ph.D. Dissertation at the University of Texas at Austin (2007); and Volume 3 (Chapters 18–24)—“Clustering of Air Voids around Aggregates in Air- Entrained Concrete,” Andrew Naranjo’s M.S. Thesis at the University of Texas at Austin (2007). A brief concluding chapter is presented that summarizes the key findings and recommendations and identifies future research needs.

[1]  Clément Duval,et al.  Inorganic Thermogravimetric Analysis , 1963 .

[2]  G. G. Litvan,et al.  PHASE TRANSITIONS OF ADSORBATES: VI, EFFECT OF DEICING AGENTS ON THE FREEZING OF CEMENT PASTE , 1975 .

[3]  P. Klieger,et al.  Effect of Fly Ash on the Air-Void Stability of Concrete , 1983 .

[4]  D A Whiting,et al.  MANUAL ON CONTROL OF AIR CONTENT IN CONCRETE , 1998 .

[5]  Robert Lewis,et al.  12 – Microsilica as an Addition , 1998 .

[6]  J. P. Appleton,et al.  Shock-tube measurements of soot oxidation rates☆ , 1973 .

[7]  A. Adamson Physical chemistry of surfaces , 1960 .

[8]  Matthew Tyler Ley,et al.  The effects of fly ash on the ability to entrain and stabilize air in concrete , 2007 .

[9]  Kenneth C. Hover,et al.  The Use of the Foam Index Test to Predict Air-Entraining Admixture Dosage in Concrete Containing Fly Ash: Part II—Development of a Standard Test Method: Apparatus and Procedure , 2008 .

[10]  Lr Roberts Air Content, Temperature, Unit Weight, and Yield , 1994 .

[11]  S. Turns Introduction to Combustion , 1995, Aerothermodynamics and Jet Propulsion.

[12]  Robert H. Hurt,et al.  Adsorption of surfactants on unburned carbon in fly ash and development of a standardized foam index test , 2003 .

[13]  Kenneth C. Hover,et al.  Impact of Concrete Placing Method on Air Content, Air-Void System Parameters, and Freeze-Thaw Durability , 1996 .

[14]  Kenneth C. Hover Analytical Investigation of the Influence of Air Bubble Size on the Determination of the Air Content of Freshly Mixed Concrete , 1988 .

[15]  M. Mercedes Maroto-Valer,et al.  Characterization of differing forms of unburned carbon present in fly ash separated by density gradient centrifugation , 2001 .

[16]  P Klieger,et al.  EFFECT OF ENTRAINED AIR ON STRENGTH AND DURABILITY OF CONCRETE MADE WITH VARIOUS MAXIMUM SIZES OF SIZES OF AGGREGATE , 1952 .

[17]  E. S. Moore,et al.  Coal: Its Properties, Analysis, Classification, Geology, Extraction, Uses and Distribution , 2010 .

[18]  D. Whiting,et al.  Control of air content in concrete , 1983 .

[19]  S Schlorholtz Chapter 43: Supplementary Cementitious Materials , 2006 .

[20]  Robert H. Hurt,et al.  Size distribution of unburned carbon in coal fly ash and its implications , 2004 .

[21]  Kc Hover Chapter 26: Air Content And Density Of Hardened Concrete , 2006 .

[22]  G. M. Bruere Air Entrainment in Mortars , 1956 .

[23]  M. Mercedes Maroto-Valer,et al.  Concentration of carbon types from fly ash by density gradient centrifugation , 1998 .

[24]  Thomas D. Wheelock,et al.  Separation of Carbon from Fly Ash Using Froth Flotation , 2006 .

[25]  David J. Corr,et al.  Air void morphology in fresh cement pastes , 2002 .

[26]  Andrew R. McFarland,et al.  Physical and morphological studies of size-classified coal fly ash , 1978 .

[27]  Eric M. Suuberg,et al.  Fundamental Study of Low-Nox Combustion Fly Ash Utilization , 1997 .

[28]  J. W. Cochran,et al.  Fly ash beneficiation by carbon burnout , 1995 .

[29]  R. Helmuth,et al.  Fly Ash in Cement and Concrete , 1987 .

[30]  D S Lane,et al.  TESTING FLY ASH IN MORTARS FOR AIR-ENTRAINMENT CHARACTERISTICS , 1991 .

[31]  Kenneth C. Hover,et al.  SOME RECENT PROBLEMS WITH AIR-ENTRAINED CONCRETE , 1989 .

[32]  R. C. Joshi,et al.  Fly Ash in Concrete: Production, Properties and Uses , 1997 .

[33]  Elizabeth Freeman,et al.  Interactions of carbon-containing fly ash with commercial air-entraining admixtures for concrete , 1997 .

[34]  George R. U. Burg SLUMP LOSS, AIR LOSS, AND FIELD PERFORMANCE OF CONCRETE , 1983 .

[35]  T C Powers,et al.  "A tribute to Theory of Volume Changes in Hardened Portland-Cement Paste during Freezing""""" , 2008, SP-249: Selected Landmark Paper Collection on Concrete Materials Research.

[36]  L Struble,et al.  Hydraulic Cements—Physical Properties , 1994 .

[37]  Francois Saucier,et al.  Air-void stability, Part III: Field tests of superplasticized concretes , 1990 .

[38]  W J Halstead,et al.  USE OF FLY ASH IN CONCRETE , 1986 .

[39]  B. Alpern,et al.  Coal deposits - origin, evolution and present characteristics , 1982 .

[40]  Robert C. Brown,et al.  Systematic errors in the use of loss-on-ignition to measure unburned carbon in fly ash , 1995 .

[41]  Kenneth C. Hover,et al.  The Use of the Foam Index Test to Predict AEA Dosage in Concrete Containing Fly Ash: Part I—Evaluation of the State of Practice , 2008 .

[42]  P. Barret,et al.  Filter dissolution of C3S as a function of the lime concentration in a limited amount of lime water , 1980 .

[43]  F. Massazza,et al.  10 – Pozzolana and Pozzolanic Cements , 1998 .

[44]  G. Kakali,et al.  Metakaolin as supplementary cementitious material , 2005 .

[45]  Van Krevelen,et al.  Coal: Typology - Physics - Chemistry - Constitution , 1993 .

[46]  James C. Hower,et al.  An examination of fly ash carbon and its interactions with air entraining agent , 1997 .

[47]  David G. Vaughan,et al.  The Skeptical Environmentalist: Measuring the Real State of the World , 2003, Antarctic Science.

[48]  Kevin J. Folliard,et al.  Mechanisms of Air Entrainment in Concrete , 2005 .

[49]  Yin-Fong Su,et al.  Fly Ash from Electrostatic Precipitators: Characterization of Large Spheres , 1980 .

[50]  Jan Elsen,et al.  A new automatic analysis system for analyzing the air void system in hardened concrete , 2002 .

[51]  John M. Stencel,et al.  Technology Development for Carbon-Ash Beneficiation by Pneumatic Transport , Triboelectric Processing , 1999 .

[52]  L. Douglas Smoot,et al.  Heterogeneous Reactions of Char and Carbon , 1979 .

[53]  Paulo J.M. Monteiro,et al.  Low-temperature scanning electron microscope analysis of the portland cement paste early hydration , 1985 .

[54]  Maohong Fan,et al.  Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash , 2001 .

[55]  J. E. Backstrom,et al.  Origin, Evolution, and Effects of the Air Void System in Concrete. Part 2-Influence of Type and Amount of Air-Entraining Agent* , 1958 .

[56]  M. Lessard,et al.  EFFECT OF PUMPING ON AIR CHARACTERISTICS OF CONVENTIONAL CONCRETE , 1996 .

[57]  James C. Hower,et al.  Investigation of fly ash carbon by thermal analysis and optical microscopy , 1998 .

[58]  A. Naranjo,et al.  Clustering of air voids around aggregates in air entrained concrete , 2007 .

[59]  B. W. Langan,et al.  A laboratory investigation for potential durability of ready-mixed concrete retempered for air content and workability , 1976 .

[60]  Richard W. Goodwin Combustion Ash/Residue Management: An Engineering Perspective , 1994 .

[61]  S. Haswell,et al.  Atomic absorption spectrometry: theory, design and applications. , 1991 .

[62]  M. Mercedes Maroto-Valer,et al.  Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation , 1999 .

[63]  Leonard W. Bell,et al.  CHEMICAL ADMIXTURES FOR CONCRETE , 1999 .

[64]  T. C. Powers,et al.  Void Space as a Basis for Producing Air-Entrained Concrete , 1954 .

[65]  James C. Hower,et al.  Impact of Conversion to low-NO x Combustion on Fly Ash Quality: Investigation of a Unit Burning High-sulfur Coal , 1999 .

[66]  Drew Myers,et al.  Surfaces, Interfaces, and Colloids: Principles and Applications , 1991 .

[67]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[68]  M. Pigeon,et al.  Durability of Concrete in Cold Climates , 1995 .

[69]  Kaoru Tsujii,et al.  Surface Activity: Principles, Phenomena and Applications , 1998 .

[70]  K. Jiang,et al.  Triboelectrostatic Process of Combustion Fly Ash after Carbon Burnout , 1999 .

[71]  J. M. Okoh,et al.  Kinetics of beneficiated fly ash by carbon burnout , 1997 .

[72]  Rj Potter,et al.  Using Supplementary Cementitious Materials in Australia , 1996 .

[73]  M. Seehra,et al.  Magnetic components and particle size distribution of coal flyash , 1983 .

[74]  Francois Saucier,et al.  Air-Void Stability, Part IV: Retempering , 1990 .

[75]  André F. Lotter,et al.  Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results , 2001 .

[76]  Robert H. Hurt,et al.  STRATEGIES AND TECHNOLOGY FOR MANAGING HIGH-CARBON ASH , 2004 .

[77]  P. K. Mehta,et al.  Properties of fresh concrete containing large amounts of fly ash , 1986 .

[78]  Paul F. Gutmann Bubble Characteristics as They Pertain to Compressive Strength and Freeze-Thaw Durability , 1988 .

[79]  P. K. Mehta,et al.  Concrete: Microstructure, Properties, and Materials , 2005 .

[80]  R. D. Nauze,et al.  Fundamentals of coal combustion in fluidised beds , 1985 .

[81]  J. E. Backstrom,et al.  Orgin, Evolution, and Effects of the Air Void System in Concrete. Part 1 - Etrained Air in Unhardend Concrete , 1958 .

[82]  G. G. Litvan,et al.  Frost action in cement paste , 1973 .

[83]  Phillip Frank Gower Banfill,et al.  The rheology of fresh concrete , 1983 .

[84]  Richard C. Mielenz,et al.  Origin, Evolution, and Effects ofthe Air Void System in ConcretePart 4-The Air Void System in Job Concrete* , 1958 .

[85]  Robert H. Hurt,et al.  Ozonation for the chemical modification of carbon surfaces in fly ash , 2001 .

[86]  O. Manz,et al.  Coal fly ash: a retrospective and future look , 1999 .

[87]  Robert H. Hurt,et al.  Mechanisms of surfactant adsorption on non-polar, air-oxidized and ozone-treated carbon surfaces , 2003 .

[88]  Don L Ivey,et al.  AIR VOID SYSTEMS IN READY-MIXED CONCRETE , 1969 .

[89]  H. Erbring,et al.  Introduction to Colloid and Surface Chemistry , 1967 .

[90]  T. C. Powers,et al.  Freezing Effects in Concrete , 1975 .

[91]  Robert H. Hurt,et al.  Adsorptive and Optical Properties of Fly Ash from Coal and Petroleum Coke Co-firing , 2000 .

[92]  G. De Schutter,et al.  Automated air void analysis of hardened concrete — a Round Robin study , 2006 .

[93]  Michel Pigeon,et al.  Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) , 1990 .

[94]  J. Speight,et al.  Chemistry and technology of coal , 2012 .

[95]  Robert G. Gann Desktop Scanners: Image Quality Evaluation , 1998 .

[96]  Kenneth C. Hover,et al.  Variables Affecting the ASTM Standard C 311 Loss on Ignition Test for Fly Ash , 2006 .

[97]  S. Kosmatka,et al.  Design and Control of Concrete Mixtures , 2002 .

[98]  Philip C. Malte,et al.  Mechanisms and Kinetics of Pollutant Formation during Reaction of Pulverized Coal , 1979 .

[99]  Göran Fagerlund Air-pore instability and its effect on the concrete properties , 1990 .

[100]  John Bensted,et al.  Hydration of Portland Cement , 1983 .

[101]  T. Powers,et al.  THE AIR REQUIREMENT OF FROST RESISTANT CONCRETE , 1950 .

[102]  Francois Saucier,et al.  Air-Void Stability, Part V: Temperature, General Analysis, and Performance Index , 1991 .

[103]  William M. Cross,et al.  Investigation of low compressive strengths of concrete in paving, precast and structural concrete , 2000 .

[104]  Michel Pigeon,et al.  Study of cement paste microstructure around air voids: Influence and distribution of soluble alkalies , 1990 .

[105]  G. M. Bruere Air‐entraining actions of anionic surfactants in portland cement pastes , 2007 .

[106]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[107]  Kuniyoshi Ishii,et al.  Advanced pulverized coal injection technology and blast furnace operation , 2000 .

[108]  Siham Kamali-Bernard,et al.  Cements Made From Blastfurnace Slag , 2019, Lea's Chemistry of Cement and Concrete.

[109]  Bruce G. Miller,et al.  Coal Energy Systems , 2004 .

[110]  Richard C. Mielenz,et al.  Origin, Evolution, and Effects of the Air Void System in Concrete. Part 3 - Influence of Water-Cement Ratio and Compaction* , 1958 .

[111]  William L. Dolch,et al.  Air-Entraining Admixtures , 1996 .

[112]  R. P. Khatri,et al.  EFFECT OF DIFFERENT SUPPLEMENTARY CEMENTITIOUS MATERIALS ON MECHANICAL PROPERTIES OF HIGH PERFORMANCE CONCRETE , 1995 .

[113]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[114]  Ron Jenkins,et al.  X-ray fluorescence spectrometry , 1999 .

[115]  Paul J. Tikalsky,et al.  Hardened Air in Concrete Roadway Pavements in Structure , 2007 .

[116]  Michel Pigeon,et al.  The influence of water-reducers on the production and stability of the air void system in concrete , 1989 .

[117]  Fly Ash on Air-Entrained Concrete , .

[118]  R. B. Williamson,et al.  Microstructure of entrained air voids in concrete, Part II , 1991 .

[119]  G. Litvan Phase transitions of adsorbates. IV. Mechanism of frost action in hardened cement paste , 2019 .

[120]  M. J. Rosen Surfactants and Interfacial Phenomena , 1978 .

[121]  Yee Soong,et al.  Triboelectrostatic Separation of Fly Ash , 1999 .

[122]  Jordi Payá,et al.  Loss on ignition and carbon content in pulverized fuel ashes (PFA): two crucial parameters for quality control , 2002 .

[123]  John P. Baltrus,et al.  Measurement of adsorption of air-entraining admixture on fly ash in concrete and cement , 2001 .