Electronic Structures of Active Sites in Copper Proteins: Coupled Binuclear and Trinuclear Cluster Sites

[1]  Edward I. Solomon,et al.  ELECTRONIC STRUCTURES OF ACTIVE SITES IN COPPER PROTEINS : CONTRIBUTIONS TO REACTIVITY , 1992 .

[2]  Akira Nakamura,et al.  A new model for dioxygen binding in hemocyanin. Synthesis, characterization, and molecular structure of the .mu.-.eta.2:.eta.2 peroxo dinuclear copper(II) complexes, [Cu(HB(3,5-R2pz)3)]2(O2) (R = isopropyl and Ph) , 1992 .

[3]  K. Karlin,et al.  Spectroscopic and theoretical studies of an end-on peroxide-bridged coupled binuclear copper(II) model complex of relevance to the active sites in hemocyanin and tyrosinase , 1991 .

[4]  J. Cole,et al.  Spectroscopic characterization of the peroxide intermediate in the reduction of dioxygen catalyzed by the multicopper oxidases , 1991 .

[5]  Edward I. Solomon,et al.  An electronic structural comparison of copper-peroxide complexes of relevance to hemocyanin and tyrosinase active sites , 1991 .

[6]  J. Cole,et al.  Spectroscopic and chemical studies of the laccase trinuclear copper active site: geometric and electronic structure , 1990 .

[7]  E. Solomon,et al.  Electronic structure of peroxide bridged copper dimers of relevance to oxyhemocyanin , 1990 .

[8]  K. Hodgson,et al.  Reactivity of the laccase trinuclear copper active site with dioxygen: an x-ray absorption edge study , 1990 .

[9]  R. Huber,et al.  The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. , 1990, European journal of biochemistry.

[10]  W G Hol,et al.  Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. , 1994, Journal of molecular biology.

[11]  Y. Moro-oka,et al.  .mu.-.eta.2:.eta.2-Peroxo binuclear copper complex, [Cu(HB(3,5-(Me2CH)2pz)3)]2(O2) , 1989 .

[12]  E. Solomon,et al.  Detailed spectroscopic analysis of half-met hemocyanins: mixed-valent contributions to electronic properties and structure , 1989 .

[13]  K. Karlin,et al.  Spectroscopic studies of the charge transfer and vibrational features of binuclear copper(II) azide complexes: comparison to the coupled binuclear copper active site in met azide hemocyanin and tyrosinase , 1989 .

[14]  M. Allendorf,et al.  Detailed spectral studies of copper acetate: excited-state interactions in copper dimers , 1989 .

[15]  R. Huber,et al.  X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. , 1989, Journal of molecular biology.

[16]  Jon Zubieta,et al.  A Cu2-O2 Complex. Crystal Structure and Characterization of a Reversible Dioxygen Binding System , 1988 .

[17]  K. Hodgson,et al.  X-ray absorption edge determination of the oxidation state and coordination number of copper: application to the type 3 site in Rhus vernicifera laccase and its reaction with oxygen , 1987 .

[18]  E. Solomon,et al.  Chemical and spectroscopic studies of the coupled binuclear copper site in type 2 depleted Rhus laccase: comparison to the hemocyanins and tyrosinase , 1987 .

[19]  K. Karlin,et al.  Vibrational, electronic, and resonance Raman spectral studies of [Cu2(YXL-O-)O2]+, a copper(II) peroxide model complex of oxyhemocyanin , 1987 .

[20]  K. Karlin,et al.  Dioxygen-copper reactivity. Reversible binding of O2 and CO to a phenoxo-bridged dicopper(I) complex , 1987 .

[21]  K. Karlin,et al.  Models for methemocyanin derivatives: Structural and spectroscopic comparisons of related azido-coordinated (N3 -) mono- and dinuclear copper(II) complexes , 1987 .

[22]  M. Allendorf,et al.  Low-temperature magnetic circular dichroism studies of native laccase: confirmation of a trinuclear copper active site , 1986 .

[23]  C. O'connor,et al.  Synthesis and characterization of phenolate-bridge copper dimers with a copper-copper separation of >3.5 .ANG.. Models for the active site of oxidized hemocyanin derivatives , 1985 .

[24]  E. Solomon,et al.  Substrate analogue binding to the coupled binuclear copper active site in tyrosinase , 1985 .

[25]  M. Allendorf,et al.  Low-temperature magnetic circular dichroism studies of native laccase: spectroscopic evidence for exogenous ligand bridging at a trinuclear copper active site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[26]  V. McKee,et al.  Hemocyanin models: synthesis, structure, and magnetic properties of a binucleating copper(II) system , 1984 .

[27]  E. Solomon,et al.  Extended X-ray absorption fine structure study of the coupled binuclear copper active site of tyrosinase from Neurospora crassa. , 1984, Biochimica et biophysica acta.

[28]  D. McMillin,et al.  A mixed-metal derivative of laccase containing mercury(II) in the type 1 binding site , 1984 .

[29]  E. Solomon,et al.  EXAFS Studies of Binuclear Copper Site of Oxy-, Deoxy-, Metaquo-, Metfluoro-, and Metazidohemocyanin from Arthropods and Molluscs , 1984 .

[30]  Susan B. Piepho,et al.  Group theory in spectroscopy , 1983 .

[31]  E. Solomon,et al.  Active sites in copper proteins an electronic structure overview , 1983 .

[32]  V. McKee,et al.  Copper(II) hemocyanin models , 1981 .

[33]  E. Solomon,et al.  Competitive inhibitor binding to the binuclear copper active site in tyrosinase , 1981 .

[34]  Louis Noodleman,et al.  Valence bond description of antiferromagnetic coupling in transition metal dimers , 1981 .

[35]  E. Solomon,et al.  Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins , 1980 .

[36]  T. Spiro,et al.  Structural studies of the hemocyanin active site. 2. Resonance Raman spectroscopy , 1980 .

[37]  O. Farver,et al.  A circular dichroism study of the reactions of Rhus laccase with dioxygen. , 1980, European journal of biochemistry.

[38]  Louis Noodleman,et al.  The Xα valence bond theory of weak electronic coupling. Application to the low‐lying states of Mo2Cl84− , 1979 .

[39]  E. Solomon,et al.  Geometric and electronic structure of oxyhemocyanin: spectral and chemical correlations to met apo, half met, met, and dimer active sites. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[40]  B. Reinhammar,et al.  Spectroscopic and catalytic properties of Rhus vernicifera laccase depleted in type 2 copper. , 1979, Journal of inorganic biochemistry.

[41]  E. Solomon,et al.  Ultraviolet resonance Raman study of oxytyrosinase. Comparison with oxyhemocyanins , 1978 .

[42]  H. Gray,et al.  Magnetic susceptibility studies of laccase and oxyhemocyanin. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Robert J.P. Williams,et al.  New trends in bio-inorganic chemistry , 1978 .

[44]  G. Rotilio,et al.  Selective removal of type 2 copper from Rhus vernicifera laccase , 1976, FEBS letters.

[45]  T. B. Freedman,et al.  A resonance Raman study of the copper protein, hemocyanin. New evidence for the structure of the oxygen-binding site. , 1976, Journal of the American Chemical Society.

[46]  G L Romani,et al.  Letter: Susceptibility studies of laccase and oxyhemocyanin using an ultrasensitive magnetometer. Antiferromagnetic behavior of the type 3 copper in Rhus laccase. , 1976, Journal of the American Chemical Society.

[47]  J. Fee copper proteins systems containing the “Blue” copper center , 1975 .

[48]  B. Reinhammar Oxidation-reduction potentials of the electron acceptors in laccases and stellacyanin. , 1972, Biochimica et biophysica acta.