Perfusion and apparent oxygenation in the human placenta (PERFOX)

To study placental function—both perfusion and an oxygenation surrogate ( T2* )—simultaneously and quantitatively in‐vivo.

[1]  N. Siauve,et al.  Assessment of human placental perfusion by intravoxel incoherent motion MR imaging , 2019, The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.

[2]  Kevin M. Johnson,et al.  Perfusion of the placenta assessed using arterial spin labeling and ferumoxytol dynamic contrast enhanced magnetic resonance imaging in the rhesus macaque , 2018, Magnetic resonance in medicine.

[3]  Paddy J. Slator,et al.  Multi‐modal functional MRI to explore placental function over gestation , 2018, Magnetic resonance in medicine.

[4]  S. Ourselin,et al.  Separating fetal and maternal placenta circulations using multiparametric MRI , 2018, Magnetic resonance in medicine.

[5]  Jana Hutter,et al.  Optimizing maternal fat suppression with constrained image‐based shimming in fetal MR , 2019, Magnetic resonance in medicine.

[6]  C. Limperopoulos,et al.  Placental perfusion imaging using velocity‐selective arterial spin labeling , 2018, Magnetic resonance in medicine.

[7]  Daan Christiaens,et al.  Integrated and efficient diffusion-relaxometry using ZEBRA , 2018, Scientific Reports.

[8]  D. Margolis,et al.  Measuring human placental blood flow with multidelay 3D GRASE pseudocontinuous arterial spin labeling at 3T , 2018, Journal of magnetic resonance imaging : JMRI.

[9]  Daniel C Alexander,et al.  Placenta microstructure and microcirculation imaging with diffusion MRI , 2017, Magnetic resonance in medicine.

[10]  Daan Christiaens,et al.  Quiet echo planar imaging for functional and diffusion MRI , 2017, Magnetic resonance in medicine.

[11]  András Jakab,et al.  Intra-voxel incoherent motion MRI of the living human foetus: technique and test–retest repeatability , 2017, European Radiology Experimental.

[12]  Catherine Limperopoulos,et al.  Non-Invasive Placental Perfusion Imaging in Pregnancies Complicated by Fetal Heart Disease Using Velocity-Selective Arterial Spin Labeled MRI , 2017, Scientific Reports.

[13]  A. Jakab,et al.  Intra-voxel incoherent motion magnetic resonance imaging of the living human fetus: the technique and within-subject reproducibility , 2017, bioRxiv.

[14]  J. Kershaw,et al.  MRI of cerebral micro-vascular flow patterns: A multi-direction diffusion-weighted ASL approach , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  A. Sørensen,et al.  Prediction of low birth weight: Comparison of placental T2* estimated by MRI and uterine artery pulsatility index. , 2017, Placenta.

[16]  E. Johnstone,et al.  R1 changes in the human placenta at 3 T in response to a maternal oxygen challenge protocol. , 2016, Placenta.

[17]  Ronald Boellaard,et al.  Comparison of Velocity- and Acceleration-Selective Arterial Spin Labeling with [15O]H2O Positron Emission Tomography , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[18]  Michael A. Chappell,et al.  Effects of background suppression on the sensitivity of dual-echo arterial spin labeling MRI for BOLD and CBF signal changes , 2014, NeuroImage.

[19]  David L. Thomas,et al.  Evaluation of segmented 3D acquisition schemes for whole‐brain high‐resolution arterial spin labeling at 3 T , 2014, NMR in biomedicine.

[20]  S. Sohlberg,et al.  Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. , 2014, Placenta.

[21]  Geoff J M Parker,et al.  R1 and R2* changes in the human placenta in response to maternal oxygen challenge , 2013, Magnetic resonance in medicine.

[22]  G J Barker,et al.  Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery Doppler ultrasound, and its relationship to pregnancy outcome. , 2013, Placenta.

[23]  A. Sørensen,et al.  Changes in human placental oxygenation during maternal hyperoxia estimated by blood oxygen level‐dependent magnetic resonance imaging (BOLD MRI) , 2013, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[24]  G J Barker,et al.  Association of placental T2 relaxation times and uterine artery Doppler ultrasound measures of placental blood flow. , 2013, Placenta.

[25]  M. Lythgoe,et al.  Measuring Biexponential Transverse Relaxation of the ASL Signal at 9.4 T to Estimate Arterial Oxygen Saturation and the Time of Exchange of Labeled Blood Water into Cortical Brain Tissue , 2013, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  J. Slotboom,et al.  Diffusion-weighted MR imaging of the placenta in fetuses with placental insufficiency. , 2010, Radiology.

[27]  Valeria Vinci,et al.  MRI and DWI: feasibility of DWI and ADC maps in the evaluation of placental changes during gestation , 2010, Prenatal diagnosis.

[28]  A. W. Woods,et al.  Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy , 2009, Placenta.

[29]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[30]  Thomas T. Liu,et al.  Cerebral blood flow and BOLD responses to a memory encoding task: A comparison between healthy young and elderly adults , 2007, NeuroImage.

[31]  Wen-Chau Wu,et al.  Velocity‐selective arterial spin labeling , 2006, Magnetic resonance in medicine.

[32]  J Wang,et al.  Effects of the apparent transverse relaxation time on cerebral blood flow measurements obtained by arterial spin labeling , 2005, Magnetic resonance in medicine.

[33]  R J Ordidge,et al.  Simultaneous noninvasive measurement of CBF and CBV using double‐echo FAIR (DEFAIR) , 2001, Magnetic resonance in medicine.

[34]  R W Bowtell,et al.  In vivo intravoxel incoherent motion measurements in the human placenta using echo‐planar imaging at 0.5 T , 2000, Magnetic resonance in medicine.

[35]  S. Francis,et al.  The investigation of placental relaxation and estimation of placental perfusion using echo-planar magnetic resonance imaging. , 1998, Placenta.

[36]  S. Francis,et al.  In vivo perfusion measurements in the human placenta using echo planar imaging at 0.5 T , 1998, Magnetic resonance in medicine.

[37]  S. Francis,et al.  Non-invasive mapping of placental perfusion , 1998, The Lancet.

[38]  Donald S. Williams,et al.  Evidence for the exchange of arterial spin‐labeled water with tissue water in rat brain from diffusion‐sensitized measurements of perfusion , 1997, Magnetic resonance in medicine.

[39]  S. Ogawa,et al.  Oxygenation‐sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields , 1990, Magnetic resonance in medicine.

[40]  H. Babcock,et al.  Association of a , 1955 .