Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence

[1]  G. Dimopoulos,et al.  Mosquito gut antiparasitic and antiviral immunity. , 2016, Developmental and comparative immunology.

[2]  K. Olsen,et al.  Molecular cloning, characterization and expression profile of a glutathione peroxidase-like thioredoxin peroxidase (TPxGl) of the rodent malaria parasite Plasmodium berghei. , 2015, Parasitology international.

[3]  G. Dimopoulos,et al.  Chromobacterium Csp_P Reduces Malaria and Dengue Infection in Vector Mosquitoes and Has Entomopathogenic and In Vitro Anti-pathogen Activities , 2014, PLoS pathogens.

[4]  R. Chandra,et al.  Exploring Anopheles gut bacteria for Plasmodium blocking activity. , 2014, Environmental microbiology.

[5]  G. Dimopoulos,et al.  The mosquito microbiota influences vector competence for human pathogens. , 2014, Current opinion in insect science.

[6]  D. Kwiatkowski,et al.  Spread of artemisinin resistance in Plasmodium falciparum malaria. , 2014, The New England journal of medicine.

[7]  M. Jacobs-Lorena,et al.  The Plasmodium bottleneck: malaria parasite losses in the mosquito vector , 2014, Memorias do Instituto Oswaldo Cruz.

[8]  R. Hunt,et al.  An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region , 2014, Parasites & Vectors.

[9]  M. Hodges,et al.  Schistosoma mansoni infection after three years of mass drug administration in Sierra Leone , 2014, Parasites & Vectors.

[10]  O. Acevedo,et al.  Characterization of PfTrxR inhibitors using antimalarial assays and in silico techniques , 2013, Chemistry Central Journal.

[11]  G. Dimopoulos,et al.  Transcriptomic Profiling of Diverse Aedes aegypti Strains Reveals Increased Basal-level Immune Activation in Dengue Virus-refractory Populations and Identifies Novel Virus-vector Molecular Interactions , 2013, PLoS neglected tropical diseases.

[12]  P. Mavingui,et al.  Diversity and function of bacterial microbiota in the mosquito holobiont , 2013, Parasites & Vectors.

[13]  Guoli Zhou,et al.  Wolbachia Invades Anopheles stephensi Populations and Induces Refractoriness to Plasmodium Infection , 2013, Science.

[14]  B. Nelson,et al.  Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity , 2013, Scientific Reports.

[15]  Sapna Sharma,et al.  Expression of Cytosolic Peroxiredoxins in Plasmodium berghei Ookinetes Is Regulated by Environmental Factors in the Mosquito Bloodmeal , 2013, PLoS pathogens.

[16]  K. Becker,et al.  Thioredoxin and glutathione systems in Plasmodium falciparum. , 2012, International journal of medical microbiology : IJMM.

[17]  C. Mbogo,et al.  Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya , 2012, Molecular ecology.

[18]  K. Poole Bacterial stress responses as determinants of antimicrobial resistance. , 2012, The Journal of antimicrobial chemotherapy.

[19]  M. Merighi,et al.  The Bacterium Pantoea stewartii Uses Two Different Type III Secretion Systems To Colonize Its Plant Host and Insect Vector , 2012, Applied and Environmental Microbiology.

[20]  T. Abee,et al.  A multicomponent sugar phosphate sensor system specifically induced in Bacillus cereus during infection of the insect gut , 2012, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[21]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[22]  D. Daffonchio,et al.  Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts , 2012, BMC Microbiology.

[23]  Ying Wang,et al.  Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya , 2011, PloS one.

[24]  David R. Riley,et al.  CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing , 2011, BMC Bioinformatics.

[25]  G. Dimopoulos,et al.  Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae , 2011, Science.

[26]  F. Laurindo,et al.  Blood Meal-Derived Heme Decreases ROS Levels in the Midgut of Aedes aegypti and Allows Proliferation of Intestinal Microbiota , 2011, PLoS pathogens.

[27]  B. Hall,et al.  Nifurtimox Activation by Trypanosomal Type I Nitroreductases Generates Cytotoxic Nitrile Metabolites* , 2011, The Journal of Biological Chemistry.

[28]  G. Glass,et al.  Genome‐wide analysis of transcriptomic divergence between laboratory colony and field Anopheles gambiae mosquitoes of the M and S molecular forms , 2010, Insect molecular biology.

[29]  C. Barillas-Mury,et al.  Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes , 2010, Science.

[30]  J. Beier,et al.  Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa , 2010, Malaria Journal.

[31]  A. Goldman,et al.  First Analysis of a Bacterial Collagen-Binding Protein with Collagen Toolkits: Promiscuous Binding of YadA to Collagens May Explain How YadA Interferes with Host Processes , 2010, Infection and Immunity.

[32]  A. Molina-Cruz,et al.  A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae , 2010, Science.

[33]  R. Mendel,et al.  Molybdenum cofactors, enzymes and pathways , 2009, Nature.

[34]  R. Bhatnagar,et al.  Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector , 2009, BMC Microbiology.

[35]  S. Rahlfs,et al.  Identification of Proteins Targeted by the Thioredoxin Superfamily in Plasmodium falciparum , 2009, PLoS pathogens.

[36]  A. Borg-Karlson,et al.  Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. , 2008, Acta tropica.

[37]  T. Tsuboi,et al.  Disruption of the Plasmodium berghei 2-Cys peroxiredoxin TPx-1 gene hinders the sporozoite development in the vector mosquito. , 2008, Molecular and biochemical parasitology.

[38]  G. Jaramillo-Gutierrez,et al.  Reactive Oxygen Species Modulate Anopheles gambiae Immunity against Bacteria and Plasmodium* , 2008, Journal of Biological Chemistry.

[39]  F. Mooi,et al.  Bordetella pertussis Expresses a Functional Type III Secretion System That Subverts Protective Innate and Adaptive Immune Responses , 2008, Infection and Immunity.

[40]  David Lampe,et al.  Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. , 2007, International journal for parasitology.

[41]  T. Tsuboi,et al.  2-Cys Peroxiredoxin TPx-1 is involved in gametocyte development in Plasmodium berghei. , 2006, Molecular and biochemical parasitology.

[42]  Emmanuel Mongin,et al.  Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species , 2006, PLoS pathogens.

[43]  Zhiyong Xi,et al.  Wolbachia Establishment and Invasion in an Aedes aegypti Laboratory Population , 2005, Science.

[44]  S. Kano,et al.  Roles of 1‐Cys peroxiredoxin in haem detoxification in the human malaria parasite Plasmodium falciparum , 2005, The FEBS journal.

[45]  Jeffrey Green,et al.  Bacterial redox sensors , 2004, Nature Reviews Microbiology.

[46]  S. Müller Redox and antioxidant systems of the malaria parasite Plasmodium falciparum , 2004, Molecular microbiology.

[47]  C. Blanco Transcriptional and translational signals of the uidA gene in Escherichia coli K12 , 1987, Molecular and General Genetics MGG.

[48]  S. Kano,et al.  Disruption of the Plasmodium falciparum 2‐Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species , 2003, FEBS letters.

[49]  Joaquín Dopazo,et al.  GEPAS: a web-based resource for microarray gene expression data analysis , 2003, Nucleic Acids Res..

[50]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[51]  John Quackenbush,et al.  Open source software for the analysis of microarray data. , 2003, BioTechniques.

[52]  Jerry Li,et al.  Within the fold: assessing differential expression measures and reproducibility in microarray assays , 2002, Genome Biology.

[53]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[54]  B. Gamain,et al.  The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase* , 2001, The Journal of Biological Chemistry.

[55]  W. Foster,et al.  Effects of Available Sugar on the Reproductive Fitness and Vectorial Capacity of the Malaria Vector Anopheles gambiae (Diptera: Culicidae) , 2001, Journal of medical entomology.

[56]  K. Lerdthusnee,et al.  Meconial Peritrophic Membranes and the Fate of Midgut Bacteria During Mosquito (Diptera: Culicidae) Metamorphosis , 2001, Journal of medical entomology.

[57]  S. Ryter,et al.  The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. , 2000, Free radical biology & medicine.

[58]  S. Lal,et al.  Epidemiology and control of malaria , 1999, Indian journal of pediatrics.

[59]  D. Simon,et al.  Large-Scale Identification of Virulence Genes fromStreptococcus pneumoniae , 1998, Infection and Immunity.

[60]  T. Sofuni,et al.  Purification and Characterization of Wild-type and Mutant “Classical” Nitroreductases of Salmonella typhimurium , 1998, The Journal of Biological Chemistry.

[61]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[62]  T. Tchuinkam,et al.  The early sporogonic cycle of Plasmodium falciparum in laboratory‐infected Anopheles gambiae: an estimation of parasite efficacy , 1998, Tropical medicine & international health : TM & IH.

[63]  D. Simon,et al.  Large-scale identification of virulence genes from Streptococcus pneumoniae. , 1998, Infection and immunity.

[64]  J. Lines,et al.  Anopheles gambiae gonotrophic cycle duration, biting and exiting behaviour unaffected by permethrin‐impregnated bednets in The Gambia , 1997, Medical and veterinary entomology.

[65]  J. Beier,et al.  Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. , 1996, The American journal of tropical medicine and hygiene.

[66]  W. Foster,et al.  Mosquito sugar feeding and reproductive energetics. , 1995, Annual review of entomology.

[67]  C. Louis,et al.  Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[68]  S. Falkow,et al.  The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells , 1993, Infection and immunity.

[69]  D. Njus,et al.  Mechanism of Ascorbic Acid Regeneration Mediated by Cytochrome b561 a , 1987, Annals of the New York Academy of Sciences.

[70]  R. Mason,et al.  Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. , 1979, The Journal of biological chemistry.

[71]  M. Novel,et al.  Regulation of beta-glucuronidase synthesis in Escherichia coli K-12: pleiotropic constitutive mutations affecting uxu and uidA expression , 1976, Journal of bacteriology.

[72]  G. Brown,et al.  Purification and properties of guanosine triphosphate cyclohydrolase II from Escherichia coli. , 1975, The Journal of biological chemistry.

[73]  J. K. Nayar,et al.  The fuel for sustained mosquito flight , 1971 .