Generalized hidden Markov models. I. Theoretical frameworks

In this paper, we present the theoretical framework for the generalization of classical hidden Markov models using fuzzy measures and fuzzy integrals. The main characteristic of the generalization is the relaxation of the usual additivity constraint of probability measures. Fuzzy integrals are defined with respect to fuzzy measures, whose key property is monotonicity with respect to set inclusion. This property is far weaker than the usual additivity property of probability measures. As a result of the new formulation, the statistical independence assumption of the classical hidden Markov models is relaxed. Two attractive properties of this generalization are: the generalized hidden Markov model reduces to the classical hidden Markov model if we used the Choquet fuzzy integral and probability measures; and the establishment of a relation between the generalized hidden Markov model and the classical nonstationary hidden Markov model in which the transitional parameters vary with time.

[1]  B.-H. Juang,et al.  Maximum-likelihood estimation for mixture multivariate stochastic observations of Markov chains , 1985, AT&T Technical Journal.

[2]  Biing-Hwang Juang,et al.  Mixture autoregressive hidden Markov models for speech signals , 1985, IEEE Trans. Acoust. Speech Signal Process..

[3]  Lawrence R. Rabiner,et al.  A segmental k-means training procedure for connected word recognition , 1986, AT&T Technical Journal.

[4]  Paramvir Bahl,et al.  Recognition of handwritten word: first and second order hidden Markov model based approach , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[6]  James M. Keller,et al.  Information fusion in computer vision using the fuzzy integral , 1990, IEEE Trans. Syst. Man Cybern..

[7]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[8]  M. Sugeno,et al.  A theory of fuzzy measures: Representations, the Choquet integral, and null sets , 1991 .

[9]  Yang He,et al.  2-D Shape Classification Using Hidden Markov Model , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  M. Sugeno,et al.  Multi-attribute classification using fuzzy integral , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[11]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .

[12]  M. Sugeno FUZZY MEASURES AND FUZZY INTEGRALS—A SURVEY , 1993 .

[13]  P. Gader,et al.  Advances in fuzzy integration for pattern recognition , 1994, CVPR 1994.

[14]  Michel Grabisch,et al.  Fuzzy integrals as a generalized class of order filters , 1994, Remote Sensing.

[15]  Michel Grabisch,et al.  Classification by fuzzy integral: performance and tests , 1994, CVPR 1994.

[16]  P. Gader,et al.  Generalization of hidden Markov models using fuzzy integrals , 1994, NAFIPS/IFIS/NASA '94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige.

[17]  Paul D. Gader,et al.  Handwritten word recognition using generalized hidden markov models , 1995 .

[18]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[19]  M. Schmitt,et al.  Mathematical morphology, order filters and fuzzy logic , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[20]  Paul D. Gader,et al.  Dynamic-programming-based handwritten word recognition using the Choquet fuzzy integral as the match function , 1996, J. Electronic Imaging.

[21]  Paul D. Gader,et al.  Fusion of handwritten word classifiers , 1996, Pattern Recognit. Lett..

[22]  Paul D. Gader,et al.  Handwritten Word Recognition Using Segmentation-Free Hidden Markov Modeling and Segmentation-Based Dynamic Programming Techniques , 1996, IEEE Trans. Pattern Anal. Mach. Intell..