Investigation of practical issues in building thermal parameter estimation

Practical issues in implementation of recursive least-squares techniques are investigated through experiments for the robust parameter estimation of a building's thermal processes. A set of supervisory rules is derived from the basic physical laws and the necessary conditions for stable systems. An approach to robust parameter estimation of a building's thermal systems is developed and implemented for the real-time identification of an outdoor test-room with high solar gains and radiant heating. Experimental results show that the room temperatures computed by the identified models agree well with the measured data.

[1]  Philip Haves,et al.  A robust self-tuning predictive controller for HVAC applications , 1989 .

[2]  David Coley,et al.  Second order system identification in the thermal response of real buildings. Paper II: Recursive formulation for on-line building energy management and control , 1992 .

[3]  Rolf Isermann,et al.  Towards Applicability of Parameter-Adaptive Control Algorithms , 1981 .

[4]  Jeff Haberl,et al.  The Great Energy Predictor Shootout II : Measuring Retriofit Savings-Overview and Discussion of Results , 1996 .

[5]  Li Qingquan,et al.  Identification and Self-tuning Control of a Paper Machine , 1988 .

[6]  D. J. Fisk,et al.  The optimisation of intermittent heating , 1977 .

[7]  Rolf Isermann,et al.  Parameter adaptive control algorithms - A tutorial , 1982, Autom..

[8]  C. Park,et al.  Fault detection in an air-handling unit using residual and recursive parameter identification methods , 1996 .

[9]  Ryo Takeuchi,et al.  A piecewise-linear regression on the ASHRAE time-series data , 1994 .

[10]  J. F. Kreider Prediction Hourly Building Energy Use : The Great Energy Predictor Shootout - Overview and Discussion of Results , 1994 .

[11]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[12]  David E. Claridge,et al.  Baselining methodology for facility-level monthly energy use. Part 1: Theoretical aspects , 1997 .

[13]  Ari Rabl,et al.  Parameter estimation in buildings: Methods for dynamic analysis of measured energy use , 1988 .

[14]  K. Subbarao,et al.  PSTAR: Primary and secondary terms analysis and renormalization: A unified approach to building energy simulations and short-term monitoring , 1988 .

[15]  T. Y. Chen,et al.  Application of adaptive predictive control to a floor heating system with a large thermal lag , 2002 .

[16]  R. Isermann,et al.  Supervision and Coordination of Parameter-Adaptive Controllers , 1989, 1990 American Control Conference.

[17]  Arthur L. Dexter,et al.  Fault Diagnosis in Air-Conditioning Systems: A Multi-Step Fuzzy Model-Based Approach , 2001 .

[18]  J. A. Crabb,et al.  An artificial intelligence approach to the prediction of natural lighting levels , 1997 .

[19]  Robert E. King Computational intelligence in control engineering , 1999 .

[20]  G. J. Bierman Summary of Numerical and Computational Aspects of The Parameter and State Estimation Problem , 1982 .

[21]  A. K. Athienitis A predictive control algorithm for massive buildings , 1988 .

[22]  Robert C. Winn,et al.  Optimal control of auxiliary heating of passive-solar-heated buildings , 1985 .

[23]  Chris Chatfield,et al.  The Analysis of Time Series , 1990 .

[24]  Chris P. Underwood,et al.  HVAC Control Systems: Modelling, Analysis and Design , 1999 .

[25]  C. E. Dorgan,et al.  Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR and an artificial neural network , 1995 .

[26]  B. P. Feuston,et al.  Generalized nonlinear regression with ensemble of neural nets: The great energy predictor shootout , 1994 .

[27]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[28]  A. D. Irving,et al.  Least squares parameter estimation of a reduced order thermal model of an experimental building , 1993 .

[29]  Baruch Givoni,et al.  Effectiveness of mass and night ventilation in lowering the indoor daytime temperatures. Part I: 1993 experimental periods , 1998 .

[30]  R. B. Farrington Reducing crawl space heat loss , 1989 .

[31]  H. C. Peitsman,et al.  ARX models and real-time model-based diagnosis , 1997 .

[32]  Karl Johan Åström,et al.  Practical issues in the implementation of self-tuning control , 1984, Autom..

[33]  Carsten Peterson,et al.  Predicting System loads with Artificial Neural Networks : Method and Result from "the Great Energy Predictor Shootout" , 1994 .

[34]  T. Y. Chen,et al.  Real-time predictive supervisory operation of building thermal systems with thermal mass , 2001 .

[35]  James E. Braun,et al.  Reducing energy costs and peak electrical demand through optimal control of building thermal storage , 1990 .