The cyclic sliding operation in Garside groups
暂无分享,去创建一个
[1] Ruth Charney,et al. Artin groups of finite type are biautomatic , 1992 .
[2] Pedro Maria Gonzalez Manchon,et al. There exist conjugate simple braids whose associated permutations are not strongly conjugate , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Sang Jin Lee,et al. Abelian Subgroups of Garside Groups , 2006, math/0609683.
[4] Volker Gebhardt,et al. Conjugacy in Garside groups I: cyclings, powers and rigidity , 2006, math/0605230.
[5] Hugh R. Morton,et al. ALGORITHMS FOR POSITIVE BRAIDS , 1994 .
[6] Sangjin Lee,et al. A Garside-theoretic approach to the reducibility problem in braid groups , 2005, math/0506188.
[7] Mladen Bestvina,et al. Train-tracks for surface homeomorphisms , 1995 .
[8] F. A. Garside,et al. THE BRAID GROUP AND OTHER GROUPS , 1969 .
[9] Joan S. Birman,et al. A new approach to the word and conjugacy problems in the braid groups , 1997 .
[10] Z. Nitecki,et al. BRAIDS AND THE NIELSEN-THURSTON CLASSIFICATION , 1995 .
[11] Patrick Dehornoy. Groupes de Garside , 2001 .
[12] David B. A. Epstein,et al. Word processing in groups , 1992 .
[13] Volker Gebhardt,et al. Conjugacy in Garside groups III: Periodic braids , 2006 .
[14] Volker Gebhardt. A New Approach to the Conjugacy Problem in Garside Groups , 2003 .
[15] P. Deligne,et al. Les immeubles des groupes de tresses généralisés , 1972 .
[16] Juan Gonzalez-Meneses,et al. Conjugacy problem for braid groups and Garside groups1 , 2001 .
[17] Eon-Kyung Lee,et al. Some power of an element in a Garside group is conjugate to a periodically geodesic element , 2006, math/0604144.
[18] Patrick Dehornoy,et al. Gaussian Groups and Garside Groups, Two Generalisations of Artin Groups , 1999 .
[19] Ki Hyoung Ko,et al. The Infimum, Supremum, and Geodesic Length of a Braid Conjugacy Class , 2000 .
[20] 이상진,et al. Algorithmic solutions to decision problems in the braid groups = 땋임 군의 판별문제들에 대한 구현가능한 해 , 2000 .
[21] S. I. Adyan. Fragments of the word δ in a Braid group , 1984 .
[22] Juan González-Meneses,et al. Solving the conjugacy problem in Garside groups by cyclic sliding , 2008, J. Symb. Comput..
[23] Alexander Lubotzky,et al. Abelian and solvable subgroups of the mapping class groups , 1983 .
[24] Hao Zheng. General cycling operations in Garside groups , 2006 .
[25] Volker Gebhardt,et al. Conjugacy in Garside groups II: structure of the ultra summit set , 2006 .