Unraveling the Detailed Interactions between the Surface Species and Nanoparticle Catalyst by a Temperature-Programed Desorption Spectrum at the Molecular Level via a Multi-Scale Simulation and Modeling Experiment

[1]  Steven B. Torrisi,et al.  Decoding reactive structures in dilute alloy catalysts , 2022, Nature communications.

[2]  C. Vogt,et al.  The concept of active site in heterogeneous catalysis , 2022, Nature Reviews Chemistry.

[3]  Shuangshuang Lv,et al.  A Simulated-TPD Study of H2 Desorption on Metal Surfaces , 2021, Surface Science.

[4]  P. Sautet,et al.  Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls , 2021, Nature Communications.

[5]  C. Shang,et al.  In Situ Active Site for CO Activation in Fe-Catalyzed Fischer-Tropsch Synthesis from Machine Learning. , 2021, Journal of the American Chemical Society.

[6]  E. Hensen,et al.  The role of H2 in Fe carburization by CO in Fischer-Tropsch catalysts , 2021, Journal of Catalysis.

[7]  K. Reuter,et al.  Adsorption Enthalpies for Catalysis Modeling through Machine-Learned Descriptors. , 2021, Accounts of chemical research.

[8]  Yong Yang,et al.  Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources , 2021 .

[9]  Ali Hussain Motagamwala,et al.  Microkinetic Modeling: A Tool for Rational Catalyst Design. , 2020, Chemical reviews.

[10]  Huabo Zhao,et al.  Synthesis of Iron-Carbide Nanoparticles: Identification of the Active Phase and Mechanism of Fe-Based Fischer–Tropsch Synthesis , 2020, CCS Chemistry.

[11]  S. Duan,et al.  Bistability for CO Oxidation: An Understanding from Extended Phenomenological Kinetics Simulations , 2019, ACS Catalysis.

[12]  J. Wintterlin,et al.  The active sites of a working Fischer–Tropsch catalyst revealed by operando scanning tunnelling microscopy , 2019, Nature Catalysis.

[13]  Pengju Ren,et al.  High-Coverage CO Adsorption and Dissociation on Ir(111), Ir(100), and Ir(110) from Computations , 2019, The Journal of Physical Chemistry C.

[14]  J. Niemantsverdriet,et al.  Atomically Defined Iron Carbide Surface for Fischer–Tropsch Synthesis Catalysis , 2018, ACS Catalysis.

[15]  Fang Wang,et al.  H2 Thermal Desorption Spectra on Pt(111): A Density Functional Theory and Kinetic Monte Carlo Simulation Study , 2018, Catalysts.

[16]  Avelino Corma,et al.  Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles , 2018, Chemical reviews.

[17]  N. Su,et al.  Beyond Mean-Field Microkinetics: Toward Accurate and Efficient Theoretical Modeling in Heterogeneous Catalysis , 2018 .

[18]  Yong Yang,et al.  Hunting the Correlation between Fe5C2 Surfaces and Their Activities on CO: The Descriptor of Bond Valence , 2018 .

[19]  Yong Yang,et al.  Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment , 2017 .

[20]  Yu Mao,et al.  Theory and applications of surface micro‐kinetics in the rational design of catalysts using density functional theory calculations , 2017 .

[21]  Cynthia M Friend,et al.  Heterogeneous Catalysis: A Central Science for a Sustainable Future. , 2017, Accounts of chemical research.

[22]  Ding Ma,et al.  Highly Tunable Selectivity for Syngas-Derived Alkenes over Zinc and Sodium-Modulated Fe5 C2 Catalyst. , 2016, Angewandte Chemie.

[23]  M. Stamatakis,et al.  Bridging model and real catalysts: general discussion. , 2016, Faraday discussions.

[24]  Albert K. Dearden,et al.  Mössbauer Spectroscopy of Iron Carbides: From Prediction to Experimental Confirmation , 2016, Scientific Reports.

[25]  Jianguo Wang,et al.  High coverage adsorption and co-adsorption of CO and H2 on Ru(0001) from DFT and thermodynamics. , 2015, Physical chemistry chemical physics : PCCP.

[26]  James W. Evans,et al.  Kinetic Monte Carlo Simulation of Statistical Mechanical Models and Coarse-Grained Mesoscale Descriptions of Catalytic Reaction-Diffusion Processes: 1D Nanoporous and 2D Surface Systems. , 2015, Chemical reviews.

[27]  Jianguo Wang,et al.  Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, θ-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies , 2015 .

[28]  M. Stamatakis Kinetic modelling of heterogeneous catalytic systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  C. Wolverton,et al.  Implications of coverage-dependent O adsorption for catalytic NO oxidation on the late transition metals , 2014 .

[30]  U. Graham,et al.  Fischer–Tropsch Synthesis: Morphology, Phase Transformation, and Carbon‐Layer Growth of Iron‐Based Catalysts , 2014 .

[31]  Tao Wang,et al.  Coverage-Dependent CO Adsorption and Dissociation Mechanisms on Iron Surfaces from DFT Computations , 2014 .

[32]  Xinggui Zhou,et al.  CO Activation Pathways of Fischer–Tropsch Synthesis on χ-Fe5C2 (510): Direct versus Hydrogen-Assisted CO Dissociation , 2014 .

[33]  Tao Wang,et al.  Hydrogen Adsorption Structures and Energetics on Iron Surfaces at High Coverage , 2014 .

[34]  Franziska Hess,et al.  Kinetic Monte Carlo simulations of heterogeneously catalyzed oxidation reactions , 2014 .

[35]  Jia Yang,et al.  Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity , 2014 .

[36]  J. Hanson,et al.  In-situ Characterization of Heterogeneous Catalysts , 2013 .

[37]  M. Neurock,et al.  CO chemisorption and dissociation at high coverages during CO hydrogenation on Ru catalysts. , 2013, Journal of the American Chemical Society.

[38]  Jianguo Wang,et al.  Surface morphology of Hägg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics , 2012 .

[39]  Huabo Zhao,et al.  Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis. , 2012, Journal of the American Chemical Society.

[40]  A. P. J Jansen,et al.  An Introduction to Kinetic Monte Carlo Simulations of Surface Reactions , 2012 .

[41]  C. J. Weststrate,et al.  Hydrogen Adsorption on Co Surfaces: A Density Functional Theory and Temperature Programmed Desorption Study , 2012 .

[42]  J. Bitter,et al.  Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins , 2012, Science.

[43]  M. Stamatakis,et al.  A review of multiscale modeling of metal-catalyzed reactions: Mechanism development for complexity and emergent behavior , 2011 .

[44]  R. V. Duyne,et al.  Wulff construction for alloy nanoparticles. , 2011, Nano letters.

[45]  B. Weckhuysen,et al.  On the surface chemistry of iron oxides in reactive gas atmospheres. , 2011, Angewandte Chemie.

[46]  D. Vlachos,et al.  Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction , 2010, Nature Chemistry.

[47]  F. Illas,et al.  Theoretical Simulation of Temperature Programmed Desorption of Molecular Oxygen on Isolated Au Nanoparticles from Density Functional Calculations and Microkinetics Models , 2010 .

[48]  J. Nørskov,et al.  Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals , 2010 .

[49]  S. Helveg,et al.  Nano-Particles in Heterogeneous Catalysis , 2009 .

[50]  D. Sorescu Plane-Wave Density Functional Theory Investigations of the Adsorption and Activation of CO on Fe5C2 Surfaces , 2009 .

[51]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[52]  F. Abild‐Pedersen,et al.  CO adsorption energies on metals with correction for high coordination adsorption sites – A density functional study , 2007 .

[53]  I. Chorkendorff,et al.  Concepts of Modern Catalysis and Kinetics: CHORKEND:CONCEP.CATALYSIS O-BK , 2005 .

[54]  Daan Frenkel,et al.  The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. , 2004, Physical review letters.

[55]  H. Jiao,et al.  Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces , 2004 .

[56]  David P. Dobson,et al.  Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction , 2004 .

[57]  M. Scheffler,et al.  Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 , 2003, cond-mat/0301602.

[58]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[59]  M. Scheffler,et al.  Composition, structure, and stability of RuO2(110) as a function of oxygen pressure , 2001, cond-mat/0107229.

[60]  J. J. Retief Powder diffraction data and Rietveld refinement of Hägg-carbide, χ-Fe5C2 , 1999, Powder Diffraction.

[61]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[62]  Matthew Neurock,et al.  First-principles-based molecular simulation of heterogeneous catalytic surface chemistry , 1998 .

[63]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[64]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[65]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[66]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[67]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[68]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[69]  C. Mims,et al.  Evidence for rapid chain growth in the Fischer-Tropsch synthesis over iron and cobalt catalysts , 1987 .

[70]  L. Marks Particle size effects on Wulff constructions , 1985 .

[71]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[72]  Y. Amenomiya,et al.  A Temperature Programmed Desorption Technique for Investigation of Practical Catalysts , 1972 .

[73]  H. Pichler,et al.  Neuere Erkenntnisse auf dem Gebiet der Synthese von Kohlenwasserstoffen aus CO und H2 , 1970 .

[74]  G. Barton,et al.  The structure of a pseudo‐hexagonal iron carbide , 1964 .

[75]  P. Emmett,et al.  Fischer—Tropsch Synthesis Mechanism Studies. The Addition of Radioactive Alcohols to the Synthesis Gas , 1953 .

[76]  P. Emmett,et al.  Mechanism Studies of the Fischer—Tropsch Synthesis. The Addition of Radioactive Alcohol , 1951 .