Weighted dominating sets and induced matchings in orthogonal ray graphs

An orthogonal ray graph is a graph such that for each vertex, there exists an axis-parallel rays (closed half-lines) in the plane, and two vertices are adjacent if and only if the corresponding rays intersect. A 2-directional orthogonal ray graph is an orthogonal ray graph such that the corresponding ray of each vertex is a rightward ray or a downward ray. We recently showed in [12] that the weighted dominating set problem can be solved in O(n4 log n) time for vertex-weighted 2-directional orthogonal ray graphs by using a new parameter, boolean-width of graphs, where n is the number of vertices in a graph. We improve the result by showing an O(n3)-time algorithm to solve the problem, based on a direct dynamic programming approach. We also show that the weighted induced matching problem can be solved in O(m6) time for edge-weighted orthogonal ray graphs, where m is the number of edges in a graph, closing the gap posed in [12].

[1]  Vijay V. Vazirani,et al.  NP-Completeness of Some Generalizations of the Maximum Matching Problem , 1982, Inf. Process. Lett..

[2]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[3]  Asahi Takaoka,et al.  On orthogonal ray trees , 2013, Discret. Appl. Math..

[4]  C. Gregory Plaxton,et al.  Vertex-Weighted Matching in Two-Directional Orthogonal Ray Graphs , 2013, ISAAC.

[5]  Martin Vatshelle,et al.  Graph classes with structured neighborhoods and algorithmic applications , 2011, Theor. Comput. Sci..

[6]  James R. Walter,et al.  Representations of chordal graphs as subtrees of a tree , 1978, J. Graph Theory.

[7]  Martin Charles Golumbic,et al.  Irredundancy in Circular Arc Graphs , 1993, Discret. Appl. Math..

[8]  Glenn K. Manacher,et al.  Incorporating Negative-Weight Vertices in Certain Vertex-Search Graph Algorithms , 1992, Inf. Process. Lett..

[9]  Vladimir Gurvich,et al.  Difference graphs , 2004, Discret. Math..

[10]  Stefan Felsner Tolerance graphs, and orders , 1998, J. Graph Theory.

[11]  Satoshi Tayu,et al.  On orthogonal ray graphs , 2010, Discret. Appl. Math..

[12]  A. Ershadi List homomorphisms and bipartite co-circular arc graphs , 2012 .

[13]  Moshe Lewenstein,et al.  New results on induced matchings , 2000, Discret. Appl. Math..

[14]  R. Sritharan,et al.  Maximum induced matching problem on hhd-free graphs , 2012, Discret. Appl. Math..

[15]  José A. Soto,et al.  Jump Number of Two-Directional Orthogonal Ray Graphs , 2011, IPCO.

[16]  Jeremy P. Spinrad,et al.  On the 2-Chain Subgraph Cover and Related Problems , 1994, J. Algorithms.

[17]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[18]  Ron Y. Pinter,et al.  Trapezoid graphs and their coloring , 1988, Discret. Appl. Math..

[19]  Bruce A. Reed,et al.  Right angle free subsets in the plane , 1995, Graphs Comb..

[20]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[21]  Patrice Belleville,et al.  Dominating the complements of bounded tolerance graphs and the complements of trapezoid graphs , 2004, Discret. Appl. Math..

[22]  Peter C. Fishburn,et al.  Proper and Unit Tolerance Graphs , 1995, Discret. Appl. Math..

[23]  Yoshio Okamoto,et al.  Dominating Set Counting in Graph Classes , 2011, COCOON.

[24]  Andreas Brandstädt,et al.  Maximum Induced Matchings for Chordal Graphs in Linear Time , 2008, Algorithmica.

[25]  Madhav V. Marathe,et al.  The distance-2 matching problem and its relationship to the MAC-Layer capacity of ad hoc wireless networks , 2004, IEEE Journal on Selected Areas in Communications.

[26]  Leen Stougie,et al.  Minimizing flow time in the wireless gathering problem , 2011, TALG.

[27]  William T. Trotter,et al.  Characterization problems for graphs, partially ordered sets, lattices, and families of sets , 1976, Discret. Math..

[28]  Asahi Takaoka,et al.  On Unit Grid Intersection Graphs (信号処理) , 2013 .

[29]  S. Lakshmivarahan,et al.  An O(N+M)-Time Algorithm for Finding a Minimum-Weight Dominating Set in a Permutation Graph , 1996, SIAM J. Comput..

[30]  Kathie Cameron,et al.  Finding a maximum induced matching in weakly chordal graphs , 2003, Discret. Math..

[31]  José A. Soto,et al.  Contributions on secretary problems, independent sets of rectangles and related problems , 2011 .

[32]  Angelika Steger,et al.  On induced matchings , 1993, Discret. Math..

[33]  Stefan Felsner,et al.  On the Recognition of Four-Directional Orthogonal Ray Graphs , 2013, MFCS.

[34]  Andreas Brandstädt,et al.  The induced matching and chain subgraph cover problems for convex bipartite graphs , 2007, Theor. Comput. Sci..

[35]  Madhav V. Marathe,et al.  Strong edge coloring for channel assignment in wireless radio networks , 2006, Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOMW'06).

[36]  Kathie Cameron,et al.  Induced Matchings in Intersection Graphs , 2000, Electron. Notes Discret. Math..

[37]  Jing Huang Representation characterizations of chordal bipartite graphs , 2006, J. Comb. Theory, Ser. B.

[38]  Dieter Kratsch,et al.  Independent Sets in Asteroidal Triple-Free Graphs , 1997, SIAM J. Discret. Math..

[39]  Darlis Herumurti,et al.  Urban Road Network Extraction Using Very High Resolution Data Based on Road Signatures Detection (メディア工学 映像表現&コンピュータグラフィックス ヒューマンインフォメーション) , 2014 .

[40]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[41]  Jan Arne Telle,et al.  Fast dynamic programming for locally checkable vertex subset and vertex partitioning problems , 2013, Theor. Comput. Sci..

[42]  Nikola Milosavljevic On Complexity of Wireless Gathering Problems on Unit-Disk Graphs , 2011, ADHOC-NOW.

[43]  R. Sritharan,et al.  A Min–Max Property of Chordal Bipartite Graphs with Applications , 2010, Graphs Comb..

[44]  Anish Man Singh Shrestha Study of orthogonal ray graphs with applications to nano-circuit design , 2011 .

[45]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[46]  Andreas Brandstädt,et al.  The NP-Completeness of Steiner Tree and Dominating Set for Chordal Bipartite Graphs , 1987, Theor. Comput. Sci..

[47]  Asahi Takaoka,et al.  A Note on Two-Directional Orthogonal Ray Graphs and Related Graphs (回路とシステム) , 2013 .

[48]  Jou-Ming Chang,et al.  Induced matchings in asteroidal triple-free graphs , 2003, Discret. Appl. Math..

[49]  Asahi Takaoka,et al.  On Two Problems of Nano-PLA Design , 2011, IEICE Trans. Inf. Syst..

[50]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[51]  Peter Damaschke,et al.  Domination in Convex and Chordal Bipartite Graphs , 1990, Inf. Process. Lett..

[52]  Fang-Rong Hsu,et al.  An Optimal Algorithm for Finding the Minimum Cardinality Dominating Set on Permutation Graphs , 1998, COCOON.

[53]  Mohammad Mahdian On the computational complexity of strong edge coloring , 2002, Discret. Appl. Math..

[54]  Stefan Felsner,et al.  Trapezoid Graphs and Generalizations, Geometry and Algorithms , 1994, Discret. Appl. Math..