The numerical simulation of fatigue crack growth using extended finite element method

Abstract In the present work, the fatigue life of homogeneous plate containing multiple discontinuities (holes, minor cracks and inclusions) is evaluated by extended finite element method (XFEM) under cyclic loading condition. The multiple discontinuities of arbitrary size are randomly distributed in the plate. The values of stress intensity factors (SIFs) are extracted from the XFEM solution by domain based interaction integral approach. Standard Paris fatigue crack growth law is used for the life estimation of various model problems. The effect of the minor cracks, voids and inclusions on the fatigue life of the material is discussed in detail.

[1]  T. Belytschko,et al.  Analysis of three‐dimensional crack initiation and propagation using the extended finite element method , 2005 .

[2]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[3]  P. Vasudevan,et al.  Experimental observations on mixed mode fatigue crack propagation , 1993 .

[4]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[5]  C. Shih,et al.  Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part I—Small Scale Yielding , 1988 .

[6]  Eugenio Giner,et al.  Extended Finite Element Method for Fretting Fatigue Crack Propagation , 2008 .

[7]  S. Eckardt,et al.  Modelling of cohesive crack growth in concrete structures with the extended finite element method , 2007 .

[8]  Xiangqiao Yan,et al.  A boundary element modeling of fatigue crack growth in a plane elastic plate , 2006 .

[9]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[10]  H. Nguyen-Dang,et al.  Multiple-cracked fatigue crack growth by BEM , 1995 .

[11]  Jesper L. Asferg,et al.  A consistent partly cracked XFEM element for cohesive crack growth , 2007 .

[12]  David L. Chopp,et al.  Modeling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method , 2003 .

[13]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[14]  Ted Belytschko,et al.  A vector level set method and new discontinuity approximations for crack growth by EFG , 2002 .

[15]  J. Prévost,et al.  Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation , 2003 .

[16]  S. Rahman,et al.  A New Interaction Integral Method for Analysis of Cracks in Orthotropic Functionally Graded Materials , 2003 .

[17]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[18]  Soheil Mohammadi,et al.  Extended Finite Element Method: for Fracture Analysis of Structures , 2008 .

[19]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[20]  T. Belytschko,et al.  Non‐linear analysis of shells with arbitrary evolving cracks using XFEM , 2005 .

[21]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[22]  T. Belytschko,et al.  Fracture and crack growth by element free Galerkin methods , 1994 .

[23]  Luiz Fernando Martha,et al.  Fatigue life and crack path predictions in generic 2D structural components , 2003 .

[24]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[25]  M. Duflot,et al.  A meshless method with enriched weight functions for fatigue crack growth , 2004 .

[26]  Ali Fatemi,et al.  Mixed mode fatigue crack growth: A literature survey , 1996 .

[27]  D. Rooke,et al.  The dual boundary element method: Effective implementation for crack problems , 1992 .

[28]  T. Belytschko,et al.  Arbitrary branched and intersecting cracks with the eXtended Finite Element Method , 2000 .

[29]  Sergiy Kalnaus,et al.  An experimental investigation of fatigue crack growth of stainless steel 304L , 2009 .

[30]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[31]  Ted Belytschko,et al.  Arbitrary discontinuities in finite elements , 2001 .

[32]  D. Chopp,et al.  Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method , 2003 .

[33]  T. Belytschko,et al.  Extended finite element method for three-dimensional crack modelling , 2000 .

[34]  Marc Duflot,et al.  Fatigue crack growth analysis by an enriched meshless method , 2004 .

[35]  N. Recho,et al.  The mixed-mode investigation of the fatigue crack in CTS metallic specimen , 2006 .

[36]  B. Moran,et al.  A general treatment of crack tip contour integrals , 1987 .

[37]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[38]  E. Gdoutos Fracture Mechanics: An Introduction , 1993 .

[39]  Ai Kah Soh,et al.  Mixed mode fatigue crack growth criteria , 2001 .