On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties

The $k$-dimensional Weisfeiler-Leman algorithm ($k$-WL) is a fruitful approach to the Graph Isomorphism problem. 2-WL corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. 1-WL is the classical color refinement routine. Indistinguishability by $k$-WL is an equivalence relation on graphs that is of fundamental importance for isomorphism testing, descriptive complexity theory, and graph similarity testing which is also of some relevance in artificial intelligence. Focusing on dimensions $k=1,2$, we investigate subgraph patterns whose counts are $k$-WL invariant, and whose occurrence is $k$-WL invariant. We achieve a complete description of all such patterns for dimension $k=1$ and considerably extend the previous results known for $k=2$.

[1]  Anuj Dawar A Restricted Second Order Logic for Finite Structures , 1998, Inf. Comput..

[2]  Stephan Kreutzer,et al.  On Hanf-equivalence and the number of embeddings of small induced subgraphs , 2014, CSL-LICS.

[3]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[4]  Martin Grohe,et al.  Fixed-Point Definability and Polynomial Time on Graphs with Excluded Minors , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[5]  Martin Grohe,et al.  Lovász Meets Weisfeiler and Leman , 2018, ICALP.

[6]  R. C. Bose,et al.  On Linear Associative Algebras Corresponding to Association Schemes of Partially Balanced Designs , 1959 .

[7]  L'aszl'o Pyber,et al.  Large connected strongly regular graphs are Hamiltonian , 2014, 1409.3041.

[8]  D. G. Higman Finite permutation groups of rank 3 , 1964 .

[9]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2015, STOC.

[10]  Lauri Hella Logical Hierarchies in PTIME , 1996, Inf. Comput..

[11]  Kurt Mehlhorn,et al.  Weisfeiler-Lehman Graph Kernels , 2011, J. Mach. Learn. Res..

[12]  Robert A. Beezer,et al.  The matching polynomial of a distance-regular graph , 2000 .

[13]  Michael R. Fellows,et al.  On the parameterized complexity of multiple-interval graph problems , 2009, Theor. Comput. Sci..

[14]  E. Scheinerman,et al.  Fractional Graph Theory: A Rational Approach to the Theory of Graphs , 1997 .

[15]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[16]  Chao Gao,et al.  Testing for Global Network Structure Using Small Subgraph Statistics , 2017, ArXiv.

[17]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1992, Comb..

[18]  Anuj Dawar,et al.  Affine systems of equations and counting infinitary logic , 2009 .

[19]  Joshua A. Grochow,et al.  Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking , 2007, RECOMB.

[20]  Edward R. Scheinerman,et al.  Fractional isomorphism of graphs , 1994, Discret. Math..

[21]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[22]  Vachik S. Dave,et al.  Triangle counting in large networks: a review , 2018, WIREs Data Mining Knowl. Discov..

[23]  Simone Severini,et al.  Pebble Games and Cospectral Graphs , 2017, Electron. Notes Discret. Math..

[24]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[25]  Martin Fürer,et al.  On the power of combinatorial and spectral invariants , 2010 .

[26]  Kristian Kersting,et al.  Glocalized Weisfeiler-Lehman Graph Kernels: Global-Local Feature Maps of Graphs , 2017, 2017 IEEE International Conference on Data Mining (ICDM).

[27]  Jacobo Torán,et al.  On the Resolution Complexity of Graph Non-isomorphism , 2013, SAT.

[28]  Pascal Schweitzer,et al.  Graphs Identified by Logics with Counting , 2015, MFCS.

[29]  Dániel Marx,et al.  Homomorphisms are a good basis for counting small subgraphs , 2017, STOC.

[30]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[31]  László Babai,et al.  Graph isomorphism in quasipolynomial time [extended abstract] , 2016, STOC.

[32]  Anuj Dawar,et al.  Solving Linear Programs without Breaking Abstractions , 2015, J. ACM.

[33]  Elias Dahlhaus,et al.  Reduction to NP-complete problems by interpretations , 1983, Logic and Machines.

[34]  N. Wormald,et al.  Models of the , 2010 .

[35]  E. J. Farrell,et al.  On matching coefficients , 1991, Discret. Math..

[36]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[37]  C. Berge Fractional Graph Theory , 1978 .

[38]  Martin Fürer,et al.  On the Combinatorial Power of the Weisfeiler-Lehman Algorithm , 2017, CIAC.

[39]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[40]  Béla Bollobás,et al.  Random Graphs , 1985 .

[41]  Jon M. Kleinberg,et al.  Subgraph frequencies: mapping the empirical and extremal geography of large graph collections , 2013, WWW.

[42]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[43]  Martin Grohe,et al.  Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks , 2018, AAAI.

[44]  Anuj Dawar,et al.  The nature and power of fixed-point logic with counting , 2015, SIGL.