A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application

The objective of image fusion is to combine information from multiple images of the same scene. The result of image fusion is a single image which is more suitable for human and machine perception or further image-processing tasks. In this paper, a generic image fusion framework based on multiscale decomposition is studied. This framework provides freedom to choose different multiscale decomposition methods and different fusion rules. The framework includes all of the existing multiscale-decomposition-based fusion approaches we found in the literature which did not assume a statistical model for the source images. Different image fusion approaches are investigated based on this framework. Some evaluation measures are suggested and applied to compare the performance of these fusion schemes for a digital camera application. The comparisons indicate that our framework includes some new approaches which outperform the existing approaches for the cases we consider.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  A. Rosenfeld,et al.  Edge and Curve Detection for Visual Scene Analysis , 1971, IEEE Transactions on Computers.

[3]  Seth Hutchinson,et al.  Image fusion and subpixel parameter estimation for automated optical inspection of electronic components , 1996, IEEE Trans. Ind. Electron..

[4]  Alexander Toet,et al.  Multiscale contrast enhancement with applications to image fusion , 1992 .

[5]  Laurent Peytavin,et al.  Cross-sensor resolution enhancement of hyperspectral images using wavelet decomposition , 1996, Defense + Commercial Sensing.

[6]  P. J. Burt,et al.  The Pyramid as a Structure for Efficient Computation , 1984 .

[7]  Claude Lejeune,et al.  Wavelet transforms for infrared applications , 1995, Optics & Photonics.

[8]  Laure J. Chipman,et al.  Wavelets and image fusion , 1995, Proceedings., International Conference on Image Processing.

[9]  Michael C. Wicks,et al.  Sensors for military special operations and law enforcement applications , 1997 .

[10]  A. Willsky,et al.  A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing , 1997, Proc. IEEE.

[11]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[12]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[13]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[14]  Ren C. Luo,et al.  Multisensor integration and fusion for intelligent machines and systems , 1995 .

[15]  Thierry Ranchin,et al.  Efficient data fusion using wavelet transform: the case of SPOT satellite images , 1993, Optics & Photonics.

[16]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[17]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[18]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[19]  K. C. Chou,et al.  Multiscale recursive estimation, data fusion, and regularization , 1994, IEEE Trans. Autom. Control..

[20]  Peter J. Burt,et al.  Enhanced image capture through fusion , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  Pramod K. Varshney,et al.  Enhancement and fusion of data for concealed weapon detection , 1997, Defense, Security, and Sensing.

[22]  J. R. Higgins Review: Robert M. Young, An introduction to nonharmonic Fourier series , 1981 .

[23]  H. Barrow,et al.  Computational vision , 1981, Proceedings of the IEEE.

[24]  B. S. Manjunath,et al.  Multisensor Image Fusion Using the Wavelet Transform , 1995, CVGIP Graph. Model. Image Process..

[25]  Yi-Tong Zhou,et al.  Multi-sensor image fusion , 1994, Proceedings of 1st International Conference on Image Processing.

[26]  W. Brent Seales,et al.  Everywhere-in-focus image fusion using controlablle cameras , 1996, Other Conferences.

[27]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Zhiyun Gao,et al.  Multispectral image fusion using wavelet transform , 1996, Other Conferences.

[29]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[30]  Michael Unser,et al.  Texture classification and segmentation using wavelet frames , 1995, IEEE Trans. Image Process..

[31]  Fred J. Taylor,et al.  Image fusion using steerable dyadic wavelet transform , 1995, Proceedings., International Conference on Image Processing.

[32]  Terrance L. Huntsberger,et al.  Wavelet-based sensor fusion , 1993, Other Conferences.

[33]  Hsi-Chin Hsin,et al.  Wavelet-based filtering in scale space for data fusion , 1995, Optics + Photonics.

[34]  Pramod K. Varshney,et al.  Concealed weapon detection: an image fusion approach , 1997, Defense + Security.

[35]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[36]  Pramod K. Varshney,et al.  Multisensor Data Fusion , 1997, IEA/AIE.

[37]  Refractor Vision , 2000, The Lancet.

[38]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[39]  Steven K. Rogers,et al.  Perceptual-based hyperspectral image fusion using multiresolution analysis , 1995 .

[40]  Jake K. Aggarwal,et al.  Multisensor Fusion for Computer Vision , 1993, NATO ASI Series.

[41]  Saleem A. Kassam,et al.  Design and performance of combination filters for signal restoration , 1991, IEEE Trans. Signal Process..

[42]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[43]  Alexander Akerman,et al.  Pyramidal techniques for multisensor fusion , 1992, Other Conferences.

[44]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[45]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[46]  Alexander Toet,et al.  Merging thermal and visual images by a contrast pyramid , 1989 .