Feature-preserving filtering with L0 gradient minimization

Feature-preserving filtering is a fundamental tool in computer vision and graphics, which can smooth input signal while preserving its sharp features. Recently, a piecewise smooth model called L"0 gradient minimization, has been proposed for feature-preserving filtering. Through optimizing an energy function involving gradient sparsity prior, L"0 gradient minimization model has strong ability to keep sharp features. Meanwhile, due to the non-convex property of L"0 term, it is a challenge to solve the L"0 gradient minimization problem. The main contribution of this paper is a novel and efficient approximation algorithm for it. The energy function is optimized in a fused coordinate descent framework, where only one variable is optimized at a time, and the neighboring variables are fused together once their values are equal. We apply the L"0 gradient minimization in two applications: (i) edge-preserving image smoothing (ii) feature-preserving surface smoothing, and demonstrate its good performance.

[1]  Frédo Durand,et al.  Edge-preserving multiscale image decomposition based on local extrema , 2009, ACM Trans. Graph..

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  Yutaka Ohtake,et al.  Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding , 2003, Proceedings Computer Graphics International 2003.

[4]  Cewu Lu,et al.  Image smoothing via L0 gradient minimization , 2011, ACM Trans. Graph..

[5]  Yutaka Ohtake,et al.  Mesh smoothing via mean and median filtering applied to face normals , 2002, Geometric Modeling and Processing. Theory and Applications. GMP 2002. Proceedings.

[6]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[7]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[8]  Jiawen Chen,et al.  Real-time edge-aware image processing with the bilateral grid , 2007, ACM Trans. Graph..

[9]  XuYi,et al.  Image smoothing via L0 gradient minimization , 2011 .

[10]  Konrad Polthier,et al.  Anisotropic Filtering of Non‐Linear Surface Features , 2004, Comput. Graph. Forum.

[11]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Chandrajit L. Bajaj,et al.  Anisotropic diffusion of surfaces and functions on surfaces , 2003, TOGS.

[13]  Daniel Cohen-Or,et al.  Bilateral mesh denoising , 2003 .

[14]  J. CandesE.,et al.  Robust uncertainty principles , 2006 .

[15]  Frédo Durand,et al.  Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..

[16]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[17]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[18]  Youyi Zheng,et al.  IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Bilateral Normal Filtering for Mesh Denoising , 2022 .

[19]  M. Kass,et al.  Smoothed local histogram filters , 2010, ACM Trans. Graph..

[20]  Frédo Durand,et al.  A Fast Approximation of the Bilateral Filter Using a Signal Processing Approach , 2006, International Journal of Computer Vision.

[21]  Lei He,et al.  Mesh denoising via L0 minimization , 2013, ACM Trans. Graph..

[22]  Zeev Farbman,et al.  Edge-preserving decompositions for multi-scale tone and detail manipulation , 2008, ACM Trans. Graph..

[23]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ralph R. Martin,et al.  Fast and Effective Feature-Preserving Mesh Denoising , 2007, IEEE Transactions on Visualization and Computer Graphics.

[25]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[26]  Tien-Tsin Wong,et al.  Deringing cartoons by image analogies , 2006, TOGS.

[27]  Roberto Manduchi,et al.  Bilateral filtering for gray and color images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Li Xu,et al.  Structure extraction from texture via relative total variation , 2012, ACM Trans. Graph..