Compositional Calculus

[1]  Gilbert Labelle,et al.  Some new computational methods in the theory of species , 1986 .

[2]  G. Rota,et al.  Finite operator calculus , 1975 .

[3]  Ira M. Gessel,et al.  A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.

[4]  D. L. Reiner Multivariate Sequences of Binomial Type , 1977 .

[5]  Steven Roman The algebra of formal series III: Several variables , 1979 .

[6]  A. Brini,et al.  Polynomial sequences of integral type , 1980 .

[7]  Steven Roman The Umbral Calculus , 1984 .

[8]  Gian-Carlo Rota,et al.  Plethysm, categories, and combinatorics , 1985 .

[9]  Mark D. Haiman,et al.  Incidence algebra antipodes and lagrange inversion in one and several variables , 1989, J. Comb. Theory, Ser. A.

[10]  Oscar A. Z. Nava,et al.  On the combinatorics of plethysm , 1987, J. Comb. Theory, Ser. A.

[11]  S. A. Joni Lagrange inversion in higher dimensions and umbral operators , 1978 .

[12]  Gian-Carlo Rota,et al.  Coalgebras and Bialgebras in Combinatorics , 1979 .

[13]  D. Zeilberger Some comments on Rota's Umbral Calculus , 1980 .

[14]  G. Rota,et al.  Formal power series of logarithmic type , 1989 .

[15]  A general umbral calculus in infinitely many variables , 1983 .

[16]  R. Stanley,et al.  On the foundations of combinatorial theory. VI. The idea of generating function , 1972 .

[17]  William Y. C. Chen,et al.  The theory of compositionals , 1993, Discret. Math..

[18]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[19]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[20]  Adriano M. Garsia,et al.  An exposá of the mullin-rota theory of polynomials of binomial type , 1973 .

[21]  G. Rota,et al.  Witt vectors and the algebra of necklaces , 1983 .

[22]  Marilena Barnabei,et al.  Recursive matrices and umbral calculus , 1982 .