Compositional Calculus
暂无分享,去创建一个
[1] Gilbert Labelle,et al. Some new computational methods in the theory of species , 1986 .
[2] G. Rota,et al. Finite operator calculus , 1975 .
[3] Ira M. Gessel,et al. A combinatorial proof of the multivariable lagrange inversion formula , 1987, J. Comb. Theory, Ser. A.
[4] D. L. Reiner. Multivariate Sequences of Binomial Type , 1977 .
[5] Steven Roman. The algebra of formal series III: Several variables , 1979 .
[6] A. Brini,et al. Polynomial sequences of integral type , 1980 .
[7] Steven Roman. The Umbral Calculus , 1984 .
[8] Gian-Carlo Rota,et al. Plethysm, categories, and combinatorics , 1985 .
[9] Mark D. Haiman,et al. Incidence algebra antipodes and lagrange inversion in one and several variables , 1989, J. Comb. Theory, Ser. A.
[10] Oscar A. Z. Nava,et al. On the combinatorics of plethysm , 1987, J. Comb. Theory, Ser. A.
[11] S. A. Joni. Lagrange inversion in higher dimensions and umbral operators , 1978 .
[12] Gian-Carlo Rota,et al. Coalgebras and Bialgebras in Combinatorics , 1979 .
[13] D. Zeilberger. Some comments on Rota's Umbral Calculus , 1980 .
[14] G. Rota,et al. Formal power series of logarithmic type , 1989 .
[15] A general umbral calculus in infinitely many variables , 1983 .
[16] R. Stanley,et al. On the foundations of combinatorial theory. VI. The idea of generating function , 1972 .
[17] William Y. C. Chen,et al. The theory of compositionals , 1993, Discret. Math..
[18] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[19] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[20] Adriano M. Garsia,et al. An exposá of the mullin-rota theory of polynomials of binomial type , 1973 .
[21] G. Rota,et al. Witt vectors and the algebra of necklaces , 1983 .
[22] Marilena Barnabei,et al. Recursive matrices and umbral calculus , 1982 .