Deterministic convolutional compressed sensing matrices

Abstract In this paper, a new class of circulant matrices built from the deterministic filter and the deterministic subsampling is introduced for convolution-based compressed sensing. The pseudo-random sequences are applied in the construction of compressed sensing matrices. By using Katz's and Bombieri's character sum estimation, we are able to design good deterministic compressed sensing matrices for sparse recovery. In the worst case, the sparsity bound in our construction is similar to that of binary compressed sensing matrices constructed by DeVore and partial Fourier matrices constructed by Xu and Xu. Moreover, in the average case, we show that our construction can reconstruct almost all k-sparse vectors with m ≥ O ( k log ⁡ N ) .

[1]  Cong Ling,et al.  Convolutional Compressed Sensing Using Deterministic Sequences , 2012, IEEE Transactions on Signal Processing.

[2]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[3]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[4]  E. Candès,et al.  Near-ideal model selection by ℓ1 minimization , 2008, 0801.0345.

[5]  Holger Rauhut,et al.  Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.

[6]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[7]  Sunil Chetty,et al.  On the Dimension of AG Trace Codes , 2009 .

[8]  A. Robert Calderbank,et al.  Beyond worst-case reconstruction in deterministic compressed sensing , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[9]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[11]  J. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, arXiv.org.

[12]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[13]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[14]  Xiaoming Huo,et al.  Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.

[15]  Robert L. Frank,et al.  Phase shift pulse codes with good periodic correlation properties (Corresp.) , 1962, IRE Trans. Inf. Theory.

[16]  J. Tropp On the conditioning of random subdictionaries , 2008 .

[17]  Gennian Ge,et al.  Deterministic Construction of Compressed Sensing Matrices via Algebraic Curves , 2012, IEEE Transactions on Information Theory.

[18]  Zhiqiang Xu,et al.  Compressed Sensing Matrices From Fourier Matrices , 2013, IEEE Transactions on Information Theory.

[19]  R. C. Heimiller,et al.  Phase shift pulse codes with good periodic correlation properties , 1961, IRE Trans. Inf. Theory.

[20]  Richard G. Baraniuk,et al.  Random Filters for Compressive Sampling and Reconstruction , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[21]  N. Katz An estimate for character sums , 1989 .

[22]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[23]  Chih-Peng Li,et al.  A Constructive Representation for the Fourier Dual of the Zadoff–Chu Sequences , 2007, IEEE Transactions on Information Theory.

[24]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[25]  J.A. Tropp Random Filters for Compressive Sampling , 2006, 2006 40th Annual Conference on Information Sciences and Systems.

[26]  Gennian Ge,et al.  Deterministic Sensing Matrices Arising From Near Orthogonal Systems , 2014, IEEE Transactions on Information Theory.

[27]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[28]  Stephen J. Dilworth,et al.  Explicit constructions of RIP matrices and related problems , 2010, ArXiv.

[29]  D. L. Donoho,et al.  Compressed sensing , 2006, IEEE Trans. Inf. Theory.

[30]  David C. Chu,et al.  Polyphase codes with good periodic correlation properties (Corresp.) , 1972, IEEE Trans. Inf. Theory.

[31]  Yonina C. Eldar,et al.  Structured Compressed Sensing: From Theory to Applications , 2011, IEEE Transactions on Signal Processing.

[32]  Gennian Ge,et al.  Deterministic Construction of Sparse Sensing Matrices via Finite Geometry , 2014, IEEE Transactions on Signal Processing.

[33]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[34]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[35]  Enrico Bombieri,et al.  On Exponential Sums in Finite Fields , 1966 .

[36]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[37]  Justin K. Romberg,et al.  Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..

[38]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[39]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.