On the Stabilizing Properties of Energy-Momentum Integrators and Coordinate Projections for Constrained Mechanical Systems

Several considerations are important if we try to carry out fast and precise simulations in multibody dynamics: the choice of modeling coordinates, the choice of dynamical formulations and the numerical integration scheme along with the numerical implementation. All these matters are very important in order to decide whether a specific method is good or not for a particular purpose.

[1]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[2]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[3]  M. Borri,et al.  The Embedded Projection Method : A general index reduction procedure for constrained system dynamics , 2006 .

[4]  M. A. Serna,et al.  Dynamic analysis of plane mechanisms with lower pairs in basic coordinates , 1982 .

[5]  José M. Goicolea,et al.  An energy-momentum algorithm for flexible multibody systems with finite element techniques , 2001 .

[6]  José M. Goicolea,et al.  Conserving Properties in Constrained Dynamics of Flexible Multibody Systems , 2000 .

[7]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[8]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[9]  João Folgado,et al.  III European Conference on Computational Mechanics , 2006 .

[10]  A. R. Humphries,et al.  Dynamical Systems And Numerical Analysis , 1996 .

[11]  Michael Ortiz,et al.  A note on energy conservation and stability of nonlinear time-stepping algorithms , 1986 .

[12]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[13]  D. Dopico,et al.  Penalty, Semi-Recursive and Hybrid Methods for MBS Real-Time Dynamics in the Context of Structural Integrators , 2004 .

[14]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[15]  R. Ledesma,et al.  Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics , 1996 .

[16]  J. M. Goicolea,et al.  Dynamic analysis of rigid and deformable multibody systems with penalty methods and energy-momentum schemes , 2000 .

[17]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[18]  Javier Cuadrado,et al.  Intelligent Simulation of Multibody Dynamics: Space-State and Descriptor Methods in Sequential and Parallel Computing Environments , 2000 .

[19]  E. Bayo,et al.  Singularity-free augmented Lagrangian algorithms for constrained multibody dynamics , 1994, Nonlinear Dynamics.

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  A. Faruqui The real-time challenge , 2001 .

[22]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[23]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[24]  M. A. Serna,et al.  A modified Lagrangian formulation for the dynamic analysis of constrained mechanical systems , 1988 .

[25]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[26]  Uri M. Ascher,et al.  Stabilization of invariants of discretized differential systems , 1997, Numerical Algorithms.

[27]  José M. Goicolea,et al.  Quadratic and Higher-Order Constraints in Energy-Conserving Formulations of Flexible Multibody Systems , 2002 .

[28]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[29]  C. SimoJ.,et al.  The discrete energy-momentum method , 1992 .

[30]  Juan C. García Orden,et al.  A Conservative Augmented Lagrangian Algorithm for the Dynamics of Constrained Mechanical Systems , 2006 .