Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance

Mixed‐matrix membranes comprising NH2‐MIL‐53(Al) and Matrimid or 6FDA‐DAM have been investigated. The metal organic framework (MOF) loading has been varied between 5 and 20 wt%, while NH2‐MIL‐53(Al) with three different morphologies, nanoparticles, nanorods, and microneedles has been dispersed in Matrimid. The synthesized membranes have been tested in the separation of CO2 from CH4 in an equimolar mixture. At 3 bar and 298 K for 8 wt% MOF loading, incorporation of NH2‐MIL‐53(Al) nanoparticles leads to the largest improvement compared to nanorods and microneedles. The incorporation of the best performing filler, i.e., NH2‐MIL‐53(Al) nanoparticles, into the highly permeable 6FDA‐DAM has a larger effect, and the CO2 permeability increases up to 85% with slightly lower selectivities for 20 wt% MOF loading. Specifically, these membranes have a permeability of 660 Barrer with a CO2/CH4 separation factor of 28, leading to a performance very close to the Robeson limit of 2008. Furthermore, a new non‐destructive technique based on Raman spectroscopy mapping is introduced to assess the homogeneity of the filler dispersion in the polymer matrix. The MOF contribution can be calculated by modeling the spectra. The determined homogeneity of the MOF filler distribution in the polymer is confirmed by focused ion beam scanning electron microscopy analysis.

[1]  F. Kapteijn,et al.  Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture?† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4cs00437j Click here for additional data file. , 2015, Chemical Society reviews.

[2]  C. Téllez,et al.  Real-time monitoring of breathing of MIL-53(Al) by environmental SEM , 2015 .

[3]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[4]  Dc Kitty Nijmeijer,et al.  Performance and plasticization behavior of polymer–MOF membranes for gas separation at elevated pressures , 2014 .

[5]  A. Ismail,et al.  The impact of ZIF-8 particle size and heat treatment on CO2/CH4 separation using asymmetric mixed matrix membrane , 2014 .

[6]  J. Ferraris,et al.  MIL-53 frameworks in mixed-matrix membranes , 2014 .

[7]  M. Omidkhah,et al.  Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation , 2014 .

[8]  C. Téllez,et al.  Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers , 2014 .

[9]  F. Kapteijn,et al.  Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance , 2014 .

[10]  Dc Kitty Nijmeijer,et al.  High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC) , 2014 .

[11]  May‐Britt Hägg,et al.  Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture , 2014 .

[12]  C. Téllez,et al.  Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation , 2014 .

[13]  F. Kapteijn,et al.  Metal Organic Framework Catalysis: Quo vadis? , 2014 .

[14]  Freek Kapteijn,et al.  Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure‐Performance Relationships in CO2/CH4 Separation Over NH2‐MIL‐53(Al)@PI , 2014 .

[15]  T. D. Atmaja,et al.  A Review on Optimization Production and Upgrading Biogas Through CO2 Removal Using Various Techniques , 2014, Applied Biochemistry and Biotechnology.

[16]  S. Kaliaguine,et al.  Optimization of continuous phase in amino-functionalized metal–organic framework (MIL-53) based co-polyimide mixed matrix membranes for CO2/CH4 separation , 2013 .

[17]  C. Téllez,et al.  Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al) , 2013 .

[18]  Lujie Cao,et al.  A highly permeable mixed matrix membrane containing CAU-1-NH2 for H2 and CO2 separation. , 2013, Chemical communications.

[19]  Seda Keskin,et al.  Recent advances in metal-organic framework-based mixed matrix membranes. , 2013, Chemistry, an Asian journal.

[20]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[21]  C. Téllez,et al.  NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation , 2013 .

[22]  J. Ferraris,et al.  Surface Cross-Linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation , 2013 .

[23]  Zhonghua Zhu,et al.  Mixed matrix membranes incorporated with size-reduced Cu-BTC for improved gas separation , 2013 .

[24]  Ting Yang,et al.  Room-temperature synthesis of ZIF-90 nanocrystals and the derived nano-composite membranes for hydrogen separation , 2013 .

[25]  V. Chen,et al.  Challenges and opportunities for mixed-matrix membranes for gas separation , 2013 .

[26]  Christopher R. Mason,et al.  Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .

[27]  F. Kapteijn,et al.  Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential , 2013 .

[28]  Ting Yang,et al.  High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor , 2013 .

[29]  S. Kitagawa,et al.  Shape-Memory Nanopores Induced in Coordination Frameworks by Crystal Downsizing , 2013, Science.

[30]  Tao Li,et al.  Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers , 2013 .

[31]  E. Chen,et al.  Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorods via coordination modulation , 2013 .

[32]  C. Janiak,et al.  Metal-organic frameworks in mixed-matrix membranes for gas separation. , 2012, Dalton transactions.

[33]  M. G. Ahunbay,et al.  Investigation of CO2-induced plasticization in fluorinated polyimide membranes via molecular simulation , 2012 .

[34]  May-Britt Hägg,et al.  Membranes for Environmentally Friendly Energy Processes , 2012, Membranes.

[35]  G. Zhu,et al.  Hydrogen Selective NH2‐MIL‐53(Al) MOF Membranes with High Permeability , 2012 .

[36]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[37]  F. Kapteijn,et al.  Interplay of metal node and amine functionality in NH2-MIL-53: modulating breathing behavior through intra-framework interactions. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[38]  Honglai Liu,et al.  Affinity between Metal―Organic Frameworks and Polyimides in Asymmetric Mixed Matrix Membranes for Gas Separations , 2012 .

[39]  F. Kapteijn,et al.  Practical Approach to Zeolitic Membranes and Coatings: State of the Art, Opportunities, Barriers, and Future Perspectives , 2012 .

[40]  Denis Rodrigue,et al.  Amine-Functionalized MIL-53 Metal–Organic Framework in Polyimide Mixed Matrix Membranes for CO2/CH4 Separation , 2012 .

[41]  Bo Liu,et al.  Metal–organic framework-based devices: separation and sensors , 2012 .

[42]  F. Kapteijn,et al.  Adsorption and separation of light gases on an amino-functionalized metal-organic framework: an adsorption and in situ XRD study. , 2012, ChemSusChem.

[43]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[44]  S. Sachdeva,et al.  Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges , 2012 .

[45]  B. C. Ng,et al.  Recent advances of inorganic fillers in mixed matrix membrane for gas separation , 2011 .

[46]  Freek Kapteijn,et al.  Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. , 2011, Chemical communications.

[47]  F. Kapteijn,et al.  Complexity behind CO2 capture on NH2-MIL-53(Al). , 2011, Langmuir : the ACS journal of surfaces and colloids.

[48]  F. Karadaş,et al.  Review on the Use of Ionic Liquids (ILs) as Alternative Fluids for CO2 Capture and Natural Gas Sweetening , 2010 .

[49]  Claude Mirodatos,et al.  Natural gas treating by selective adsorption: Material science and chemical engineering interplay , 2009 .

[50]  Enrico Drioli,et al.  Membrane Gas Separation: A Review/State of the Art , 2009 .

[51]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[52]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[53]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[54]  J. Caro,et al.  Butene isomers separation on titania supported MFI membranes at conditions relevant for practice , 2009 .

[55]  Daniel Gunzelmann,et al.  Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology. , 2009, Inorganic chemistry.

[56]  L. Robeson,et al.  The upper bound revisited , 2008 .

[57]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[58]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[59]  W. Koros,et al.  Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties , 2006 .

[60]  F. Kapteijn,et al.  Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .

[61]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[62]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[63]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[64]  Matthias Wessling,et al.  CO2-induced plasticization phenomena in glassy polymers , 1999 .

[65]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[66]  Donald R Paul,et al.  Gas Sorption and Transport in Glassy Polymers , 1979 .

[67]  V. Stannett The transport of gases in synthetic polymeric membranes — an historic perspective , 1978 .