Topological properties of the one dimensional exponential random geometric graph

In this article we study the one-dimensional random geometric (random interval) graph when the location of the nodes are independent and exponentially distributed. We derive exact results and limit theorems for the connectivity and other properties associated with this random graph. We show that the asymptotic properties of a graph with a truncated exponential distribution can be obtained using the exponential random geometric graph. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008

[1]  Erhard Godehardt,et al.  On the connectivity of a random interval graph , 1996 .

[2]  D. Manjunath,et al.  On range matrices and wireless networks in d dimensions , 2005, Third International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt'05).

[3]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[4]  M. J. Appel,et al.  The connectivity of a graph on uniform points on [0,1]d , 2002 .

[5]  V. Rohatgi,et al.  An introduction to probability and statistics , 1968 .

[6]  Probability Models for Random Multigraphs with Applications in Cluster Analysis , 1993 .

[7]  D. Manjunath,et al.  On the connectivity in finite ad hoc networks , 2002, IEEE Communications Letters.

[8]  Enrique Castillo Extreme value theory in engineering , 1988 .

[9]  D. Manjunath,et al.  Topological properties of random wireless networks , 2006 .

[10]  Sheldon M. Ross Introduction to Probability Models. , 1995 .

[11]  Thomas G. Robertazzi,et al.  Critical connectivity phenomena in multihop radio models , 1989, IEEE Trans. Commun..

[12]  B. Arnold,et al.  A first course in order statistics , 2008 .

[13]  M. Penrose On k-connectivity for a geometric random graph , 1999, Random Struct. Algorithms.

[14]  Vijay K. Rohatgi,et al.  An Introduction to Probability and Statistics: Rohatgi/An Introduction , 2000 .

[15]  John A. Silvester,et al.  Optimum transmission radii for packet radio networks or why six is a magic number , 1978 .

[16]  Keith Q. T. Zhang A note on the estimation of Nakagami-m fading parameter , 2002, IEEE Communications Letters.

[17]  Martin J. B. Appel,et al.  The Maximum Vertex Degree of a Graph on Uniform Points in [0, 1] d , 1997, Advances in Applied Probability.

[18]  Piyush Gupta,et al.  Critical Power for Asymptotic Connectivity in Wireless Networks , 1999 .

[19]  Sheldon M. Ross,et al.  Introduction to Probability Models, Eighth Edition , 1972 .

[20]  E. Godehardt Graphs as Structural Models: The Application of Graphs and Multigraphs in Cluster Analysis , 1988 .

[21]  B. Arnold,et al.  A first course in order statistics , 1994 .

[22]  Panganamala Ramana Kumar,et al.  The Number of Neighbors Needed for Connectivity of Wireless Networks , 2004, Wirel. Networks.

[23]  Gregory L. McColm,et al.  Threshold Functions for Random Graphs on a Line Segment , 2004, Combinatorics, Probability and Computing.