Ab initiotheory of the Gibbs free energy and a hierarchy of local moment correlation functions in itinerant electron systems: The magnetism of theMn3Amaterials class

We present an \textit{ab-initio} disordered local moment theory for the Gibbs free energy of a magnetic material. Two central objects are calculated: the lattice Fourier transform of the direct local moment - local moment correlation functions in the paramagnetic state and local internal magnetic fields as functions of magnetic order. We identify the potentially most stable magnetic phases from the first, which can include non-collinear and long-period states in complex multi-atom unit cells, and extract higher order correlations among the local moments from the second. We propose that these latter entities produce a picture of effective multi-site magnetic interactions depending on the state and extent of magnetic order and discuss its relation to other approaches. We show how magnetic phase diagrams for temperature, magnetic field, and lattice structure and also magnetocaloric and mechanocaloric effects can be obtained from this approach. The theory accurately predicts the order of transitions and quantifies contributions to first-order and order-order magnetic phase transitions from both purely electronic sources and magnetoelastic effects. Our case study is the apparently frustrated magnetism of the Mn$_3$A class of materials in all its cubic, hexagonal, and tetragonal structures. The theory produces magnetic phases and transition temperatures in good agreement with experiment. We explain the first-order triangular antiferromagnetic to collinear antiferromagnetic transition in cubic Mn$_3$Pt as a magnetovolume driven effect, and its absence for A=Ir and Rh. We also construct the magnetic phase diagram of Mn$_3$Pt and explore its potential as a barocaloric material. Finally, we prepare the groundwork for future fully relativistic studies of the temperature dependence of the magnetism of Mn$_3$A, including Mn$_3$Sn, Mn$_3$Ga, and Mn$_3$Ge.

[1]  Anomalous Hall effect arising from noncollinear antiferromagnetism. , 2013, Physical review letters.

[2]  R. Evans The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids , 1979 .

[3]  G. Fecher,et al.  Structural, electronic, and magnetic properties of tetragonal Mn3-xGa: Experiments and first-principles calculations , 2008 .

[4]  Huseyin Kurt,et al.  High spin polarization in epitaxial films of ferrimagnetic Mn3Ga , 2011 .

[5]  J. Staunton,et al.  Using density functional theory to describe slowly varying fluctuations at finite temperatures: local magnetic moments in Gd and the ‘not so local’ moments of Ni , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  X. Moya,et al.  Multisite Exchange-Enhanced Barocaloric Response in Mn3NiN , 2018, Physical Review X.

[7]  J. Staunton,et al.  Lanthanide contraction and magnetism in the heavy rare earth elements , 2007, Nature.

[8]  C. Patrick,et al.  Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped YCo5 and GdCo5 , 2017, 1708.00288.

[9]  A. Ruban,et al.  Magnetic ordering and exchange interactions in structural modifications of M n 3 Ga alloys: Interplay of frustration, atomic order, and off-stoichiometry , 2016 .

[10]  K. G. Sandeman Magnetocaloric materials: The search for new systems , 2012, 1201.3113.

[11]  C. Felser,et al.  Non-collinear antiferromagnets and the anomalous Hall effect , 2014, 1410.5985.

[12]  L. Chapon,et al.  Spontaneous toroidal moment and field-induced magnetotoroidic effects in Ba2CoGe2O7 , 2011 .

[13]  Kübler,et al.  Role of Orbital Polarization in Weak Ferromagnetism. , 1996, Physical review letters.

[14]  B. Sundman,et al.  Calculation of Debye temperature for crystalline structures - A case study on Ti, Zr, and Hf , 2001 .

[15]  T. Ohoyama,et al.  Magnetic properties of ϵ-Mn3Ge , 1988 .

[16]  H. Skriver,et al.  Atomic and magnetic configurational energetics by the generalized perturbation method , 2004 .

[17]  V. A. Gubanov,et al.  Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys , 1987 .

[18]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[19]  Geetha Balakrishnan,et al.  Calculating the Magnetic Anisotropy of Rare-Earth-Transition-Metal Ferrimagnets. , 2018, Physical review letters.

[20]  B. L. Gyorffy,et al.  On the fundamental equations of the Korringa-Kohn-Rostoker (KKR) version of the coherent potential approximation (CPA) , 1980 .

[21]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[22]  Claudia Felser,et al.  Exchange bias up to room temperature in antiferromagnetic hexagonal Mn3Ge , 2013, 1311.3067.

[23]  J. Staunton,et al.  Theory of Magnetic Ordering in the Heavy Rare Earths: Ab Initio Electronic Origin of Pair- and Four-Spin Interactions. , 2016, Physical review letters.

[24]  O. Eriksson,et al.  Interatomic exchange interactions for finite-temperature magnetism and nonequilibrium spin dynamics. , 2013, Physical review letters.

[25]  G. Kádár,et al.  Neutron diffraction study of Mn3Ga , 1970 .

[26]  B. L. Gyorffy Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys , 1972 .

[27]  Lei Zhang,et al.  Magnetic-phase transitions and magnetocaloric effects , 2002 .

[28]  K. Załȩski,et al.  Tailoring magnetization and anisotropy of tetragonal Mn3Ga thin films by strain-induced growth and spin orbit coupling , 2018 .

[29]  J. Korringa,et al.  On the calculation of the energy of a Bloch wave in a metal , 1947 .

[30]  C. Song,et al.  Temperature- dependent transport properties of FeRh , 2017 .

[31]  A. Tishin,et al.  The Magnetocaloric Effect and its Applications , 2003 .

[32]  E. Krén,et al.  INVESTIGATION OF THE MAGNETIC PHASE TRANSFORMATION IN Mn3Sn , 1972 .

[33]  L. Mañosa,et al.  Elastocaloric effect associated with the martensitic transition in shape-memory alloys. , 2008, Physical review letters.

[34]  N. Mermin Thermal Properties of the Inhomogeneous Electron Gas , 1965 .

[35]  X. Moya,et al.  Giant Electrocaloric Strength in Single‐Crystal BaTiO3 , 2013, Advanced materials.

[36]  J. B. Forsyth,et al.  Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis , 1990 .

[37]  B. Ujfalussy,et al.  First-principles calculations of spin interactions and the magnetic ground states of Cr trimers on Au(111) , 2008, 0802.3113.

[38]  J. Zemen,et al.  Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory , 2016, 1609.03515.

[39]  C. Felser,et al.  Spin-Polarized Current in Noncollinear Antiferromagnets. , 2017, Physical review letters.

[40]  C. Felser,et al.  Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compoundsMn3X(A. Saxena,et al.  Thermodynamics of ferrotoroidic materials: Toroidocaloric effect , 2012, 1205.1392.

[42]  Claudia Felser,et al.  Mn3Ga, a compensated ferrimagnet with high Curie temperature and low magnetic moment for spin torque transfer applications , 2007 .

[43]  Andrew G. Glen,et al.  APPL , 2001 .

[44]  J. Staunton,et al.  Tuning the metamagnetism of an antiferromagnetic metal , 2012, 1206.3394.

[45]  J. Matutes-Aquino,et al.  High enhanced magnetization in carbon-doped Mn3Ga thin films , 2017 .

[46]  Y. Yamaguchi,et al.  Magnetic Structure and Weak Ferromagnetism of Mn3Sn Studied by Polarized Neutron Diffraction , 1982 .

[47]  G. Kádár,et al.  Magnetic Structures and Exchange Interactions in the Mn-Pt System , 1968 .

[48]  K. Knight,et al.  Magnetoelastic coupling and competing entropy changes in substituted CoMnSi metamagnets , 2012, 1208.3176.

[49]  Koshi Takenaka,et al.  Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. , 2015, Nature materials.

[50]  C. Felser,et al.  Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge , 2015, Science Advances.

[51]  Xiufeng Han,et al.  First-principles study of perpendicular magnetic anisotropy in ferrimagnetic D022-Mn3X (X = Ga, Ge) on MgO and SrTiO3 , 2018 .

[52]  G. Kádár,et al.  Magnetic structures and magnetic transformations in ordered Mn3(Rh, Pt) alloys , 1966 .

[53]  E. Bauer,et al.  Magnetic Phase Dependence of the Anomalous Hall Effect in Mn$_3$Sn Single Crystals , 2018, 1804.00116.

[54]  S. Murakami,et al.  Spin Anisotropy and Quantum Hall Effect in the Kagomé Lattice : Chiral Spin State based on a Ferromagnet , 1999, cond-mat/9912206.

[55]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .

[56]  C. You,et al.  Perpendicular magnetic anisotropy properties of tetragonal Mn3Ga films under various deposition conditions , 2016 .

[57]  J. Mauro Broken Ergodicity , 2021, Materials Kinetics.

[58]  L. Regnault,et al.  Controlling toroidal moments by crossed electric and magnetic fields , 2013 .

[59]  Mapping the magnetic exchange interactions from first principles: Anisotropy anomaly and application to Fe, Ni, and Co , 2010, 1010.0273.

[60]  Ezio Bruno,et al.  Temperature dependent magnetic anisotropy in metallic magnets from an ab initio electronic structure theory: L1(0)-ordered FePt. , 2004, Physical review letters.

[61]  S. Gama,et al.  Tuning the giant inverse magnetocaloric effect in Mn2−xCrxSb compounds , 2013, 1307.3194.

[62]  N. Mōri,et al.  Pressure Dependence of Magnetic Transition Temperatures and Lattice Parameter in an Antiferromagnetic Ordered Alloy Mn3Pt , 1987 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  M. Long A new magnetic structure for Mn3Pt , 1991 .

[65]  M. Fähnle,et al.  Spin Interactions in bcc and fcc Fe beyond the Heisenberg Model. , 2011, Physical review letters.

[66]  W. Li,et al.  Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate , 2015, Nature Communications.

[67]  B. L. Gyorffy,et al.  Temperature dependence of magnetic anisotropy: An ab initio approach , 2006 .

[68]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[69]  M. Katsnelson,et al.  Microscopic Origin of Heisenberg and Non-Heisenberg Exchange Interactions in Ferromagnetic bcc Fe. , 2015, Physical review letters.

[70]  L. Mañosa,et al.  Barocaloric and magnetocaloric effects in Fe49Rh51 , 2014, 1405.7156.

[71]  S. Khmelevskyi,et al.  Prospect for tunneling anisotropic magneto-resistance in ferrimagnets: Spin-orbit coupling effects in Mn3Ge and Mn3Ga , 2016 .

[72]  Wenzhu Liu,et al.  Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states , 2015 .

[73]  M. Shirai,et al.  Successive magnetic phase transitions in Mn3Pt , 1990 .

[74]  J. Staunton,et al.  Fluctuating local moments, itinerant electrons, and the magnetocaloric effect: Compositional hypersensitivity of FeRh , 2014, 1401.4004.

[75]  Guizhou Xu,et al.  Designing magnetic compensated states in tetragonal Mn3Ge-based Heusler alloys , 2017 .

[76]  A. Ruban,et al.  Magnetic exchange interactions in the paramagnetic state of hcp Gd , 2007 .

[77]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[78]  Y. J. Zhang,et al.  Transition from Anomalous Hall Effect to Topological Hall Effect in Hexagonal Non-Collinear Magnet Mn3Ga , 2017, Scientific Reports.

[79]  I. Tomeno,et al.  Magnetic neutron scattering study of ordered Mn3Ir , 1999 .

[80]  Nicola A. Spaldin,et al.  The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect , 2008 .

[81]  S. Shallcross,et al.  An ab initio effective Hamiltonian for magnetism including longitudinal spin fluctuations , 2005 .

[82]  S. Nikitin,et al.  Giant elastocaloric effect in FeRh alloy , 1992 .

[83]  Y. Yamaguchi,et al.  Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge , 1982 .

[84]  G. Bihlmayer,et al.  Magnetic Ground State Stabilized by Three-Site Interactions: Fe/Rh(111). , 2018, Physical review letters.

[85]  Qiming Zhang,et al.  Large Electrocaloric Effect in Ferroelectric Polymers Near Room Temperature , 2008, Science.

[86]  J. Staunton,et al.  Onset of magnetic order in strongly-correlated systems from ab initio electronic structure calculations: application to transition metal oxides , 2008, 0802.3660.

[87]  M. Venkatesan,et al.  Magnetic and electronic properties of D022-Mn3Ge (001) films , 2012 .

[88]  C. Patrick,et al.  Ab initio calculations of temperature-dependent magnetostriction of Fe and A2Fe1−xGax within the disordered local moment picture , 2019, Physical Review B.

[89]  G. Bihlmayer,et al.  Three-dimensional spin structure on a two-dimensional lattice: Mn/Cu(111). , 2001, Physical review letters.

[90]  Yang Zhang,et al.  Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3 , 2016, Science Advances.

[91]  Richard Phillips Feynman,et al.  Slow Electrons in a Polar Crystal , 1955 .

[92]  W. Kohn,et al.  Solution of the Schrödinger Equation in Periodic Lattices with an Application to Metallic Lithium , 1954 .

[93]  Julie B. Staunton,et al.  A first-principles theory of ferromagnetic phase transitions in metals , 1985 .